Jacubus Albertyn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9256851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cryptococcal Protease(s) and the Activation of SARS-CoV-2 Spike (S) Protein. Cells, 2022, 11, 437.	4.1	6
2	Transcriptional response of <i>Candida albicans</i> to <i>Pseudomonas aeruginosa</i> in a polymicrobial biofilm. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	8
3	Role of the high-affinity reductive iron acquisition pathway of <i>Candida albicans</i> in prostaglandin E2 production, virulence, and interaction with <i>Pseudomonas aeruginosa</i> . Medical Mycology, 2021, 59, 869-881.	0.7	9
4	Candida albicans SET3 Plays a Role in Early Biofilm Formation, Interaction With Pseudomonas aeruginosa and Virulence in Caenorhabditis elegans. Frontiers in Cellular and Infection Microbiology, 2021, 11, 680732.	3.9	8
5	The role of lipid droplets in microbial pathogenesis. Journal of Medical Microbiology, 2021, 70, .	1.8	10
6	Inhibitory effect of polyunsaturated fatty acids alone or in combination with fluconazole on <i>Candida krusei</i> biofilms <i>in vitro</i> and in <i>Caenorhabditis elegans</i> . Medical Mycology, 2021, 59, 1225-1237.	0.7	8
7	The Repurposing of the Antimalaria Drug, Primaquine, as a Photosensitizer to Inactivate Cryptococcal Cells. Photochem, 2021, 1, 275-286.	2.2	1
8	Caenorhabditis elegans as a model animal for investigating fungal pathogenesis. Medical Microbiology and Immunology, 2020, 209, 1-13.	4.8	22
9	Transcriptome Analyses of Candida albicans Biofilms, Exposed to Arachidonic Acid and Fluconazole, Indicates Potential Drug Targets. G3: Genes, Genomes, Genetics, 2020, 10, 3099-3108.	1.8	11
10	Synthesis and function of fatty acids and oxylipins, with a focus on Caenorhabditis elegans. Prostaglandins and Other Lipid Mediators, 2020, 148, 106426.	1.9	9
11	Heterologous coexpression of the benzoateâ€paraâ€hydroxylase CYP53B1 with different cytochrome P450 reductases in various yeasts. Microbial Biotechnology, 2019, 12, 1126-1138.	4.2	17
12	Functional Characterization of Cryptococcal Genes: Then and Now. Frontiers in Microbiology, 2018, 9, 2263.	3.5	1
13	Iron at the Centre of Candida albicans Interactions. Frontiers in Cellular and Infection Microbiology, 2018, 8, 185.	3.9	72
14	Pseudomonas aeruginosa produces aspirin insensitive eicosanoids and contributes to the eicosanoid profile of polymicrobial biofilms with Candida albicans. Prostaglandins Leukotrienes and Essential Fatty Acids, 2017, 117, 36-46.	2.2	14
15	Genome-wide functional analysis in <i>Candida albicans</i> . Virulence, 2017, 8, 1563-1579.	4.4	18
16	Inhibitory spectrum of diverse guaiacol-producing Alicyclobacillus acidoterrestris by poly dimethyl ammonium chloride disinfectant. LWT - Food Science and Technology, 2017, 84, 241-247.	5.2	7
17	Elucidation of the Role of 3-Hydroxy Fatty Acids in Cryptococcus-amoeba Interactions. Frontiers in Microbiology, 2017, 8, 765.	3.5	7
18	Candida albicans and Pseudomonas aeruginosa Interaction, with Focus on the Role of Eicosanoids. Frontiers in Physiology, 2016, 7, 64.	2.8	77

JACUBUS ALBERTYN

#	Article	IF	CITATIONS
19	Culture dependent and independent genomic identification of Alicyclobacillus species in contaminated commercial fruit juices. Food Microbiology, 2016, 56, 21-28.	4.2	20
20	Method for identification ofCryptococcus neoformansandCryptococcus gattiiuseful in resource-limited settings. Journal of Clinical Pathology, 2016, 69, 352-357.	2.0	7
21	Cryptococcal 3-Hydroxy Fatty Acids Protect Cells Against Amoebal Phagocytosis. Frontiers in Microbiology, 2015, 6, 1351.	3.5	9
22	Eukaryotic opportunists dominate the deep-subsurface biosphere in South Africa. Nature Communications, 2015, 6, 8952.	12.8	48
23	Candida albicans mutant construction and characterization of selected virulence determinants. Journal of Microbiological Methods, 2015, 115, 153-165.	1.6	7
24	A broad-range yeast expression system reveals <i>Arxula adeninivorans</i> expressing a fungal self-sufficient cytochrome P450 monooxygenase as an excellent whole-cell biocatalyst. FEMS Yeast Research, 2014, 14, 556-566.	2.3	14
25	Virulence of South African Candida albicans strains isolated from different clinical samples. Medical Mycology, 2014, 52, 246-253.	0.7	6
26	Phenothiazine is a potent inhibitor of prostaglandin E2production byCandida albicansbiofilms. FEMS Yeast Research, 2013, 13, 849-855.	2.3	10
27	Trichosporon vanderwaltii sp. nov., an asexual basidiomycetous yeast isolated from soil and beetles. Antonie Van Leeuwenhoek, 2013, 103, 313-319.	1.7	11
28	Chryseobacterium carnipullorum sp. nov., isolated from raw chicken. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 3243-3249.	1.7	28
29	Polyunsaturated fatty acids cause apoptosis in C. albicans and C. dubliniensis biofilms. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1463-1468.	2.4	42
30	Development of a novel rDNA based plasmid for enhanced cell surface display on Yarrowia lipolytica. AMB Express, 2012, 2, 27.	3.0	14
31	Cryptococcus cyanovorans sp. nov., a basidiomycetous yeast isolated from cyanide-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 1208-1214.	1.7	9
32	Whole-cell hydroxylation of n-octane by Escherichia coli strains expressing the CYP153A6 operon. Applied Microbiology and Biotechnology, 2012, 96, 1507-1516.	3.6	28
33	Arachidonic acid metabolites in pathogenic yeasts. Lipids in Health and Disease, 2012, 11, 100.	3.0	17
34	Molecular and physiological aspects of alcohol dehydrogenases in the ethanol metabolism of Saccharomyces cerevisiae. FEMS Yeast Research, 2012, 12, 33-47.	2.3	70
35	Sciadonic acid modulates prostaglandin E2 production by epithelial cells during infection with C. albicans and C. dubliniensis. Prostaglandins and Other Lipid Mediators, 2012, 97, 66-71.	1.9	16
36	Pathogenic Gram-positive cocci in South African rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases, 2011, 34, 483-487.	1.9	14

JACUBUS ALBERTYN

#	Article	IF	CITATIONS
37	Effect of inhibitors of arachidonic acid metabolism on prostaglandin E2 production by Candida albicans and Candida dubliniensis biofilms. Medical Microbiology and Immunology, 2011, 200, 23-28.	4.8	23
38	Rhodotorula bloemfonteinensis sp. nov., Rhodotorula eucalyptica sp. nov., Rhodotorula orientis sp. nov. and Rhodotorula pini sp. nov., yeasts isolated from monoterpene-rich environments. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 2320-2327.	1.7	12
39	Advances in Gene Expression in Non-Conventional Yeasts. , 2009, , 369-403.		1
40	The alcohol dehydrogenases of <i>Saccharomyces cerevisiae</i> : a comprehensive review. FEMS Yeast Research, 2008, 8, 967-978.	2.3	202
41	The cloning and sequencing of the UDP-galactose 4-epimerase gene (galE) fromAvibacterium paragallinarum. DNA Sequence, 2007, 18, 265-268.	0.7	3
42	Cycloheximide resistance in the Lipomycetaceae revisited. Canadian Journal of Microbiology, 2007, 53, 509-513.	1.7	4
43	Cloning of an epoxide hydrolase-encoding gene fromRhodotorula mucilaginosa and functional expression inYarrowia lipolytica. Yeast, 2007, 24, 69-78.	1.7	28
44	Multigene phylogenetic analysis of the Lipomycetaceae and the proposed transfer ofZygozymaspecies toLipomycesandBabjevia anomalatoDipodascopsis. FEMS Yeast Research, 2007, 7, 1027-1034.	2.3	30
45	Genetic diversity of the Rep gene of beak and feather disease virus in South Africa. Archives of Virology, 2006, 151, 2539-2545.	2.1	19
46	Heterologous expression of the benzoate para-hydroxylase encoding gene (CYP53B1) from Rhodotorula minuta by Yarrowia lipolytica. Applied Microbiology and Biotechnology, 2006, 72, 323-329.	3.6	18
47	Cryptococcus anemochoreius sp. nov., a novel anamorphic basidiomycetous yeast isolated from the atmosphere in central South Africa. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 2703-2706.	1.7	6
48	Beak and feather disease virus haemagglutinating activity using erythrocytes from African Grey parrots and Brown-headed parrots : research communication. Onderstepoort Journal of Veterinary Research, 2005, 72, 263-5.	1.2	4
49	Psittacine beak and feather disease virus in budgerigars and ring-neck parakeets in South Africa. Onderstepoort Journal of Veterinary Research, 2004, 71, 29-34.	1.2	16
50	The testing and modification of a commercially available transport medium for the transportation of pure cultures of <i>Haemophilus paragallinarum<i></i> for serotyping. Onderstepoort Journal of Veterinary Research, 2004, 71, 93-8.</i>	1.2	2
51	Cloning and Sequencing of an Epoxide Hydrolase Gene fromRhodosporidium paludigenum. DNA Sequence, 2004, 15, 202-205.	0.7	9
52	Transcriptional repression of -regulated ?-xylanase production by ethanol in recombinant strains of. FEMS Yeast Research, 2001, 1, 233-240.	2.3	3
53	Transcriptional repression ofADH2-regulated β-xylanase production by ethanol in recombinant strains ofSaccharomyces cerevisiae. FEMS Yeast Research, 2001, 1, 233-240.	2.3	6
54	Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae. Microbiology (United Kingdom), 1999, 145, 715-727.	1.8	115

JACUBUS ALBERTYN

#	Article	lF	CITATIONS
55	Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Molecular Microbiology, 1999, 31, 1087-1104.	2.5	357
56	MAP Kinase Pathways in the Yeast <i>Saccharomyces cerevisiae</i> . Microbiology and Molecular Biology Reviews, 1998, 62, 1264-1300.	6.6	854
57	Characteristics of Fps1-dependent and -independent glycerol transport in Saccharomyces cerevisiae. Journal of Bacteriology, 1997, 179, 7790-7795.	2.2	87
58	Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress EMBO Journal, 1995, 14, 1360-1371.	7.8	368
59	GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway Molecular and Cellular Biology, 1994, 14, 4135-4144.	2.3	641
60	Characterization of the osmotic-stress response inSaccharomyces cerevisiae: osmotic stress and glucose repression regulate glycerol-3-phosphate dehydrogenase independently. Current Genetics, 1994, 25, 12-18.	1.7	108
61	TheFPS1 gene product functions as a glycerol facilitator in the yeastSaccharomyces cerevisiae. Folia Microbiologica, 1994, 39, 534-536.	2.3	7
62	Purification and characterization of glycerol-3-phosphate dehydrogenase ofSaccharomyces cerevisiae. FEBS Letters, 1992, 308, 130-132.	2.8	54