MarÃ-a Obdulia SÃ;nchez-Guadarrama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9256814/publications.pdf

Version: 2024-02-01

7 papers

233 citations

1478505 6 h-index

7 g-index

1720034

7 all docs 7 docs citations

times ranked

7

341 citing authors

#	Article	IF	CITATIONS
1	Cytotoxic activity, X-ray crystal structures and spectroscopic characterization of cobalt(II), copper(II) and zinc(II) coordination compounds with 2-substituted benzimidazoles. Journal of Inorganic Biochemistry, 2009, 103, 1204-1213.	3.5	73
2	Chiral Resolution of <i>RS</i> -Praziquantel via Diastereomeric Co-Crystal Pair Formation with <scp> </scp> -Malic Acid. Crystal Growth and Design, 2016, 16, 307-314.	3.0	56
3	Self-Assembly of Fluorinated Boronic Esters and 4,4′-Bipyridine into 2:1 N→B Adducts and Inclusion of Aromatic Guest Molecules in the Solid State: Application for the Separation of <i>o</i> , <i>m</i> , <i>p</i> , <i>y</i> , <i>d</i> , <i>d<!--</td--><td>3.0</td><td>40</td></i>	3.0	40
4	New boronates prepared from 2,4-pentanedione derived ligands of the NO2 and N2O2 type $\hat{a}\in$ comparison to the complexes obtained from the corresponding salicylaldehyde derivatives. Journal of Organometallic Chemistry, 2004, 689, 811-822.	1.8	31
5	Formation of carbonylrhenium cryptates with alkali metal cations: Coordination chemistry studies of [Ph2P(E)NP(E)Ph2]â°', E=O, S, Se towards ReBr(CO)5. Polyhedron, 2010, 29, 3103-3110.	2.2	16
6	Diastereomeric Salt Formation by the γ-Amino Acid <i>RS</i> -Baclofen and <i>L</i> -Malic Acid: Stabilization by Strong Heterosynthons Based on Hydrogen Bonds between RNH ₃ ⁺ and COOH/COO [–] Groups. Crystal Growth and Design, 2018, 18, 7356-7367.	3.0	12
7	Crystal structures of organic salts of chloranilic acid and 2,2′-bi(3-hydroxy-1,4-naphthoquinone) acting as proton donors to 4,4′-Bipyridine and 1,4-Diazabicyclo[2.2.2]octane: 3D networks with bifurcated N+-H···Oâ⁻³/O or N+-H···O/Cl synthons. Journal of Molecular Structure, 2020, 1205, 127609.	3.6	5