Antonella Glisenti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9256673/publications.pdf

Version: 2024-02-01

147 papers 4,057 citations

36 h-index 138484 58 g-index

148 all docs 148 docs citations

148 times ranked 5261 citing authors

#	Article	IF	CITATIONS
1	Electrochemical study of symmetrical intermediate temperature - solid oxide fuel cells based on La0.6Sr0.4MnO3 / Ce0.9Gd0.1O1.95 for operation in direct methane / air. Electrochimica Acta, 2022, 409, 139939.	5.2	7
2	Exsolution in La and Ni co-doped strontium titanate: a suitable anode for running SOFCs on ammonia as alternative fuel. E3S Web of Conferences, 2022, 334, 04008.	0.5	O
3	Exsolution in Ni-doped lanthanum strontium titanate: a perovskite-based material for anode application in ammonia-fed Solid Oxide Fuel Cell. International Journal of Hydrogen Energy, 2022, 47, 13921-13932.	7.1	20
4	Is fighting against pollutants possible with critical raw material free perovskites?. Catalysis Today, $2021, , .$	4.4	O
5	Tuning the turnover frequency and selectivity of photocatalytic CO2 reduction to CO and methane using platinum and palladium nanoparticles on Ti-Beta zeolites. Chemical Engineering Journal, 2021, 410, 128234.	12.7	17
6	Single chamber Solid Oxide Fuel Cells selective electrodes: A real chance with brownmillerite-based nanocomposites. International Journal of Hydrogen Energy, 2021, 46, 14735-14747.	7.1	6
7	Structural and Catalytic Characterization of La0.6Sr0.4MnO3 Nanofibers for Application in Direct Methane Intermediate Temperature Solid Oxide Fuel Cell Anodes. Energies, 2021, 14, 3602.	3.1	10
8	Industrially Produced Fe- and Mn-Based Perovskites: Effect of Synthesis on Reactivity in Three-Way Catalysis: Part 1. ACS Omega, 2021, 6, 24325-24337.	3.5	3
9	Novel Correlations between Spectroscopic and Morphological Properties of Activated Carbons from Waste Coffee Grounds. Processes, 2021, 9, 1637.	2.8	7
10	Industrially Produced Fe- and Mn-Based Perovskites: Effect of Synthesis on Reactivity in Three-Way Catalysis: Part 2. ACS Omega, 2021, 6, 24316-24324.	3.5	1
11	A hyperbranched polymer synthetic strategy for the efficient fixation of metal species within nanoporous structures: Application in automotive catalysis. Chemical Engineering Journal, 2021, 421, 129496.	12.7	9
12	Cu/CGO cermet based electrodes for Symmetric and Reversible Solid Oxide Fuel Cells. International Journal of Hydrogen Energy, 2020, 45, 13652-13658.	7.1	8
13	Adsorption and reactivity of CO at a stepped SrTiO3(1Â0Â0) surface in the presence of Cu impurities. Applied Surface Science, 2020, 521, 146450.	6.1	6
14	Critical Raw Material-Free Catalysts and Electrocatalysts: Complementary Strategies to Activate Economic, Robust, and Ecofriendly SrTiO3. Energy & Economic, Robust, and Ecofriendly SrTiO3. Energy & Economic, Robust, and Ecofriendly SrTiO3.	5.1	11
15	Reversible, all-perovskite SOFCs based on La, Sr gallates. International Journal of Hydrogen Energy, 2020, 45, 29155-29165.	7.1	7
16	Sustainable, Site‧pecific Linkage of Antimicrobial Peptides to Cotton Textiles. Macromolecular Bioscience, 2020, 20, e2000199.	4.1	5
17	CuO/La _{0.5} Sr _{0.5} CoO ₃ : precursor of efficient NO reduction catalyst studied by <i>operando</i> high energy X-ray diffraction under three-way catalytic conditions. Physical Chemistry Chemical Physics, 2020, 22, 18798-18805.	2.8	3
18	Developing Functionality in Perovskites from Abatement of Pollutants to Sustainable Energy Conversion and Storage., 2020,,.		2

#	Article	IF	Citations
19	Fluorinated vs. Zwitterionic-Polymer Grafted Surfaces for Adhesion Prevention of the Fungal Pathogen Candida albicans. Polymers, 2020, 12, 398.	4.5	9
20	Environmentally Friendly La0.6Sr0.4Ga0.3Fe0.7O3 (LSGF)-Functionalized Fly-Ash Geopolymers for Pollutants Abatement in Industrial Processes. Catalysis Letters, 2020, 150, 2230-2235.	2.6	4
21	CexZr1â^'xO2 mixed oxide as OSC materials for supported Pd three-way catalysts: Flame-spray-pyrolysis vs. co-precipitation. Applied Catalysis A: General, 2020, 598, 117527.	4.3	9
22	CuO/La0.5Sr0.5CoO3 nanocomposites in TWC. Applied Catalysis B: Environmental, 2019, 255, 117753.	20.2	19
23	Bismuth titanate-based UV filters embedded mesoporous silica nanoparticles: Role of bismuth concentration in the self-sealing process. Journal of Colloid and Interface Science, 2019, 549, 1-8.	9.4	24
24	On the Effects of Doping on the Catalytic Performance of (La,Sr)CoO3. A DFT Study of CO Oxidation. Catalysts, 2019, 9, 312.	3.5	12
25	Pulsed reactivity on LaCoO ₃ -based perovskites: a comprehensive approach to elucidate the CO oxidation mechanism and the effect of dopants. Catalysis Science and Technology, 2019, 9, 2749-2757.	4.1	22
26	Surface Segregation of Amphiphilic PDMS-Based Films Containing Terpolymers with Siloxane, Fluorinated and Ethoxylated Side Chains. Coatings, 2019, 9, 153.	2.6	12
27	Functional Nanostructured Perovskite Oxides from Radical Polymer Precursors. Inorganic Chemistry, 2019, 58, 15942-15952.	4.0	7
28	Impact of cation redox chemistry on continuous hydrothermal synthesis of 2D-Ni(Co/Fe) hydroxides. Reaction Chemistry and Engineering, 2019, 4, 2060-2073.	3.7	3
29	Perovskites as Alternatives to Noble Metals in Automotive Exhaust Abatement: Activation of Oxygen on LaCrO3 and LaMnO3. Topics in Catalysis, 2019, 62, 244-251.	2.8	27
30	Synthesis and Development of Four Way Catalysts Starting from Critical Raw Material Free Perovskites: Influence of Doping and Synthesis Conditions. Topics in Catalysis, 2019, 62, 237-243.	2.8	7
31	Investigation of thermal effects on heterogeneous exothermic reactions and their impact on kinetics studies. Chemical Engineering Journal, 2019, 377, 120179.	12.7	6
32	Synthesis, characterization and cytotoxic activity of novel copper(II) complexes with aroylhydrazone derivatives of 2-Oxo-1,2-dihydrobenzo[h]quinoline-3-carbaldehyde. Journal of Inorganic Biochemistry, 2018, 182, 18-28.	3.5	41
33	Catalytic Mechanisms of NO Reduction in a CO–NO Atmosphere at Co- and Cu-Doped SrTiO ₃ (100) Surfaces. Journal of Physical Chemistry C, 2018, 122, 449-454.	3.1	28
34	PGM-free CuO/LaCoO3 nanocomposites: New opportunities for TWC application. Applied Catalysis B: Environmental, 2018, 227, 446-458.	20.2	52
35	Preparation of CuO/SBA-15 catalyst by the modified ammonia driven deposition precipitation method with a high thermal stability and an efficient automotive CO and hydrocarbons conversion. Applied Catalysis B: Environmental, 2018, 223, 103-115.	20.2	30
36	Manganese Based Perovskites in Ethanol Steam Reforming. Catalysis Letters, 2018, 148, 220-226.	2.6	7

3

#	Article	IF	CITATIONS
37	Rational Development of IT-SOFC Electrodes Based on the Nanofunctionalization of La _{0.6} Sr _{0.4} Ga _{0.3} Fe _{0.7} O ₃ with Oxides. PART 1: Cathodes by Means of Iron Oxide. ACS Applied Energy Materials, 2018, 1, 6840-6850.	5.1	17
38	Multicomponent Metal Oxide Nanostructures: Fabrication and Study of Core Issues to Improve Gas Sensing Performance. Proceedings (mdpi), 2018, 2, .	0.2	0
39	Small Copper Clusters Supported on SrTiO ₃ : An Experimental and Theoretical Study. European Journal of Inorganic Chemistry, 2018, 2018, 3829-3834.	2.0	6
40	Sol-gel polysiloxane films containing different surface-active trialkoxysilanes for the release of the marine foulant Ficopomatus enigmaticus. Polymer, 2018, 145, 426-433.	3.8	26
41	Cu@LaNiO 3 based nanocomposites in TWC applications. Applied Catalysis B: Environmental, 2017, 209, 214-227.	20.2	39
42	Use of statistical design of experiments for surface modification of Kapton films by CF 4 O 2 microwave plasma treatment. Applied Surface Science, 2017, 420, 579-585.	6.1	9
43	On A-doping strategy for tuning the TWC catalytic performance of perovskite based catalysts. Applied Catalysis A: General, 2017, 544, 94-107.	4.3	29
44	On the synthesis and stability of La0.6Sr0.4Ga0.3Fe0.7O3. Journal of the European Ceramic Society, 2017, 37, 1049-1058.	5.7	9
45	Strontium and copper doped LaCoO3: New cathode materials for solid oxide fuel cells?. International Journal of Hydrogen Energy, 2017, 42, 1724-1735.	7.1	28
46	Comparison between a Water-Based and a Solvent-Based Impregnation Method towards Dispersed CuO/SBA-15 Catalysts: Texture, Structure and Catalytic Performance in Automotive Exhaust Gas Abatement. Catalysts, 2016, 6, 164.	3.5	14
47	On the synthesis and thermal stability of RuN, an uncommon nitride. Surface and Coatings Technology, 2016, 295, 93-98.	4.8	6
48	Copolymer films containing amphiphilic side chains of well-defined fluoroalkyl-segment length with biofouling-release potential. RSC Advances, 2016, 6, 67127-67135.	3.6	19
49	Energetics of CO oxidation on lanthanide-free perovskite systems: the case of Co-doped SrTiO ₃ . Physical Chemistry Chemical Physics, 2016, 18, 33282-33286.	2.8	29
50	Adsorption of CO and formation of carbonates at steps of pure and Co-doped SrTiO3 surfaces by DFT calculations. Applied Surface Science, 2016, 364, 522-527.	6.1	21
51	Amphiphilic modified-styrene copolymer films: Antifouling/fouling release properties against the green alga Ulva linza. Progress in Organic Coatings, 2016, 90, 235-242.	3.9	31
52	Largely Cu-doped LaCo1â^'Cu O3 perovskites for TWC: Toward new PGM-free catalysts. Applied Catalysis B: Environmental, 2016, 180, 94-105.	20.2	118
53	Surface Chemistry of Amphiphilic Polysiloxane/Triethyleneglycol-Modified Poly(pentafluorostyrene) Block Copolymer Films Before and After Water Immersion. Macromolecular Chemistry and Physics, 2015, 216, 2086-2094.	2.2	14
54	Adsorption of small molecules at the cobalt-doped SrTiO3(001) surface: A first-principles investigation. Surface Science, 2015, 633, 68-76.	1.9	25

#	Article	IF	CITATIONS
55	Washcoating vs. direct synthesis of LaCoO 3 on monoliths for environmental applications. Applied Catalysis A: General, 2015, 499, 146-157.	4.3	31
56	Environmental and traffic-related parameters affecting road dust composition: A multi-technique approach applied to Venice area (Italy). Atmospheric Environment, 2015, 122, 596-608.	4.1	57
57	Chemical Tuning versus Microstructure Features in Solid-State Gas Sensors: LaFe _{1-xx/sub>Ga_{<i>x</i>}O₃, a Case Study. Chemistry of Materials, 2014, 26, 1505-1513.}	6.7	55
58	A comparison between different fouling-release elastomer coatings containing surface-active polymers. Biofouling, 2014, 30, 387-399.	2.2	51
59	Co- and Cu-Doped Titanates: Toward a New Generation of Catalytic Converters. Catalysis Letters, 2014, 144, 1466-1471.	2.6	27
60	Surface behavior of modified-polystyrene triblock copolymers with different macromolecular architectures. European Polymer Journal, 2014, 60, 69-78.	5.4	4
61	Electronic structure of SrTi1â^'xMxO3â^'Î' (M=Co, Ni, Cu) perovskite-type doped-titanate crystals by DFT and DFT+U calculations. Chemical Physics Letters, 2013, 588, 102-108.	2.6	24
62	Steam reforming and oxidative steam reforming of methanol and ethanol: The behaviour of LaCo0.7Cu0.3O3. Applied Catalysis A: General, 2013, 453, 102-112.	4.3	54
63	La0.7Sr0.3CuO3â^Î: An Interesting Catalyst for Methanol and Ethanol Treatment. Catalysis Letters, 2013, 143, 254-259.	2.6	6
64	Off-Stoichiometry Spectroscopic Investigations of Pure Amorphous Silica and N-Doped Silica Thin Films. Journal of Physical Chemistry C, 2013, 117, 3475-3482.	3.1	8
65	Mixed Magnesium and Zinc Oxide Prepared by Co-precipitation and Analyzed by XPS. Surface Science Spectra, 2012, 19, 13-22.	1.3	3
66	CuO/MgO Nanocomposites by Wet Impregnation: An XPS Study. Surface Science Spectra, 2012, 19, 23-29.	1.3	11
67	Plasma Functionalization of Multiwalled Carbon Nanotubes and Their Use in the Preparation of Nylon 6â€Based Nanohybrids. Plasma Processes and Polymers, 2012, 9, 503-512.	3.0	54
68	Amphiphilic block copolymer/poly(dimethylsiloxane) (PDMS) blends and nanocomposites for improved fouling-release. Biofouling, 2011, 27, 529-541.	2.2	120
69	<l>A Special Section on</l> Oxide Based Nanomaterials in Clean Energy Research. Nanoscience and Nanotechnology Letters, 2011, 3, 679-680.	0.4	0
70	Oxygen Permeation Measurements: An Alternative Tool to Select New Intermediate Temperature Solid Oxide Fuel Cell Cathodes. Nanoscience and Nanotechnology Letters, 2011, 3, 723-730.	0.4	3
71	La0.8Sr0.2Ga0.8Fe0.2O3â~Î: Influence of the preparation procedure on reactivity toward methanol and ethanol. Applied Catalysis B: Environmental, 2010, 97, 307-322.	20.2	28
72	Polystyrene–Polyperfluorooctylethyl acrylate Diblock Copolymers: The Effect of Dilution of the Fluorinated Mesogenic Chains on Bulk and Surface Properties. Macromolecular Symposia, 2010, 296, 294-302.	0.7	8

#	Article	IF	Citations
73	ZnO/MgO Nanocomposites by Wet Impregnation: An XPS study. Surface Science Spectra, 2010, 17, 76-86.	1.3	2
74	Diblock and Triblock Fluorinated Copolymers: An ARXPS Study. Surface Science Spectra, 2010, 17, 102-114.	1.3	2
75	Au/CeO ₂ Supported Nanocatalysts: Interaction with Methanol. Nanoscience and Nanotechnology Letters, 2010, 2, 213-219.	0.4	5
76	CuO/CeO2 Nanocomposites: An XPS Study. Surface Science Spectra, 2009, 16, 13-26.	1.3	7
77	Ag/CeO2 Nanocomposites Obtained by Deposition-Precipitation, Studied by XPS. Surface Science Spectra, 2009, 16, 27-35.	1.3	1
78	Influence of Sr and Fe Dopants on the Surface Properties of LaGaO3. Surface Science Spectra, 2009, 16, 95-110.	1.3	0
79	LaMnO3: Influence of the Addition of Ba and Sr. Surface Science Spectra, 2009, 16, 83-94.	1.3	3
80	La2Cu0.8Co0.2O4+δ by Pechini Method. Surface Science Spectra, 2009, 16, 75-82.	1.3	3
81	La0.6Sr0.4Fe0.6Co0.2Cu0.2O3-Î Powders by XPS. Surface Science Spectra, 2009, 16, 58-66.	1.3	0
82	Au/CeO2 Powders: Influence of the Preparation Procedure, Studied by XPS. Surface Science Spectra, 2009, 16, 45-57.	1.3	0
83	CuOx/CeO2 Nanocomposites Prepared by Deposition-Precipitation: An XPS Study. Surface Science Spectra, 2009, 16, 36-44.	1.3	0
84	CeO ₂ /YSZ Nanocomposite Powders: Reactivity Towards CO Oxidation. Nanoscience and Nanotechnology Letters, 2009, 1, 73-76.	0.4	1
85	Surface Properties of Mesophaseâ€Forming Fluorinated Bicycloacrylate/Polysiloxane Methacrylate Copolymers. Macromolecular Chemistry and Physics, 2009, 210, 1746-1753.	2.2	25
86	Surface engineering of styrene/PEGylatedâ€fluoroalkyl styrene block copolymer thin films. Journal of Polymer Science Part A, 2009, 47, 267-284.	2.3	52
87	Fourier transform infrared spectroscopy and solid-state nuclear magnetic resonance studies of octadecyl modified metal oxides obtained from different silane precursors. Journal of Chromatography A, 2009, 1216, 2345-2354.	3.7	12
88	Low Surface Energy Properties of Smectic Fluorinated Block Copolymer/SEBS Blends. Molecular Crystals and Liquid Crystals, 2009, 500, 51-62.	0.9	15
89	Silica–zirconia mixed oxide samples by an hybrid materials based innovative preparation procedure: Influence of preparation procedure and composition on active sites. Journal of Non-Crystalline Solids, 2009, 355, 481-487.	3.1	6
90	PrMnO3 Prepared by the Citrate Gel Method, Studied by XPS. Surface Science Spectra, 2009, 16, 67-74.	1.3	13

#	Article	IF	CITATIONS
91	Influence of the synthesis procedure on the properties and reactivity of nanostructured ceria powders. Applied Catalysis A: General, 2008, 339, 108-120.	4.3	47
92	LSCF and Fe2O3/LSCF powders: Interaction with methanol. Journal of Molecular Catalysis A, 2008, 282, 52-61.	4.8	9
93	La _{0.6} Sr _{0.4} Co _{1â^'(i>yPerovskites: Influence of the Co/Fe Atomic Ratio on Properties and Catalytic Activity toward Alcohol Steam-Reforming. Chemistry of Materials, 2008, 20, 2314-2327.}	6.7	117
94	Nanostructured Films of Amphiphilic Fluorinated Block Copolymers for Fouling Release Application. Langmuir, 2008, 24, 13138-13147.	3.5	144
95	CuxO/CeO2 Nanocomposites: Synthesis and Reactivity with NO. Materials Research Society Symposia Proceedings, 2008, 1074, 1.	0.1	0
96	From La2O3 To LaCoO3: XPS Analysis. Surface Science Spectra, 2008, 15, 1-13.	1.3	22
97	CuO/La0.6Sr0.4Co0.2Fe0.8O3-δPowder by XPS. Surface Science Spectra, 2008, 15, 14-22.	1.3	1
98	La0.6Sr0.4Co1-yFeyO3-δPowders Studied by X-ray Photoelectron Spectroscopy. Surface Science Spectra, 2008, 15, 41-58.	1.3	0
99	Nanoscale Magnesium Oxide. , 2008, , 111-115.		0
100	Effect of the Preparation Procedure on the Surface Properties of Nanosized Ceria Powders. Surface Science Spectra, 2007, 14, 8-18.	1.3	0
101	LaSrCoFeO and Fe2O3/LaSrCoFeO Powders:Â Synthesis and Characterization. Chemistry of Materials, 2007, 19, 2796-2808.	6.7	49
102	Synthesis, characterization and reactivity study of nanoscale magnesium oxide. Journal of Molecular Catalysis A, 2007, 274, 137-147.	4.8	46
103	LaCoO3: Effect of synthesis conditions on properties and reactivity. Applied Catalysis B: Environmental, 2007, 72, 351-362.	20.2	140
104	WO3/CeO2Nanocomposite Powders: Â Synthesis, Characterization, and Reactivity. Chemistry of Materials, 2006, 18, 3270-3280.	6.7	35
105	Nanostructured CeO2 Powders by XPS. Surface Science Spectra, 2006, 13, 17-30.	1.3	27
106	Nanostructured Oxide-Based Powders:Â Investigation of the Growth Mode of the CeO2Clusters on the YSZ Surface. Journal of Physical Chemistry B, 2006, 110, 2515-2521.	2.6	24
107	XPS Study of MgO Nanopowders Obtained by Different Preparation Procedures. Surface Science Spectra, 2006, 13, 58-71.	1.3	72
108	La0.6Sr0.4Co0.8Fe0.2O3-δ and Fe2O3/La0.6Sr0.4Co0.8Fe0.2O3-δ Powders: XPS Characterization. Surface Science Spectra, 2006, 13, 31-47.	1.3	6

#	Article	IF	Citations
109	WO3/CeO2/YSZ nanocomposite as a potential catalyst for methanol reforming. Journal of Power Sources, 2005, 145, 644-651.	7.8	3
110	Experimental and QM/MM investigation of the hydrated silica surface reactivity. Chemical Physics Letters, 2005, 405, 459-464.	2.6	10
111	Influence of preparation technique and iron doping on the structure and reactivity of mixed Fe–Ti–O nanocomposites. Materials Chemistry and Physics, 2005, 92, 394-402.	4.0	9
112	Properties and Reactivity of Nanostructured CeO2 Powders:  Comparison among Two Synthesis Procedures. Chemistry of Materials, 2005, 17, 6272-6286.	6.7	122
113	Low Surface Energy Characteristics of Mesophase-Forming ABC and ACB Triblock Copolymers with Fluorinated B Blocks. Molecular Crystals and Liquid Crystals, 2005, 441, 211-226.	0.9	22
114	CoOx/CeO2Nanocomposite Powders:Â Synthesis, Characterization, and Reactivity. Chemistry of Materials, 2005, 17, 3403-3414.	6.7	89
115	Low temperature oxidation of carbon monoxide: the influence of water and oxygen on the reactivity of a Co3O4 powder surface. Applied Catalysis B: Environmental, 2004, 48, 267-274.	20.2	201
116	Surface reactivity of NiO/Co3O4 and Fe2O3/Co3O4 nanocomposite catalysts: interaction with methanol. Journal of Molecular Catalysis A, 2004, 217, 175-184.	4.8	26
117	Surface Acidity and Basicity of a Rutile Powder. Chemistry of Materials, 2003, 15, 1181-1188.	6.7	73
118	New NiO/Co3O4 and Fe2O3/Co3O4 Nanocomposite Catalysts:  Synthesis and Characterization. Chemistry of Materials, 2003, 15, 2502-2510.	6.7	104
119	Experimental and Theoretical Study of the Interaction of CO2with α-Al2O3. Inorganic Chemistry, 2003, 42, 436-445.	4.0	52
120	Study of Surface Reactivity of Cobalt Oxides:Â Interaction with Methanol. Chemistry of Materials, 2002, 14, 3090-3099.	6.7	166
121	Surface Reactivity of NiO:Â Interaction with Methanol. Chemistry of Materials, 2002, 14, 4895-4903.	6.7	66
122	MgCl2/TiCl4/AlEt3 catalytic system for olefin polymerisation: a XPS study. Journal of Molecular Catalysis A, 2002, 178, 115-123.	4.8	35
123	Study of the surface acidity of an hematite powder. Journal of Molecular Catalysis A, 2002, 187, 119-128.	4.8	67
124	The reactivity of a Fe–Ti–O mixed oxide under different atmospheres: study of the interaction with simple alcohol molecules. Journal of Molecular Catalysis A, 2000, 153, 169-190.	4.8	48
125	Silica glass interaction with calcium hydroxide: a surface chemistry approach. Journal of Cultural Heritage, 2000, 1, 375-384.	3.3	26
126	Study of the Interaction between Simple Molecules and Wâ^'Sn-Based Oxide Catalysts. 1. The Case of WO3Powders. Langmuir, 2000, 16, 6173-6182.	3.5	47

#	Article	IF	CITATIONS
127	Study of the Interaction between Simple Molecules and Wâ ⁻ Sn Based Oxide Catalysts. 2. The Case of Wâ ⁻ Snâ ⁻ O Mixed Oxide Powders. Langmuir, 2000, 16, 2642-2650.	3.5	5
128	Reactivity of simple alcohols on Fe2O3powders An XPS and FTIR study. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 173-182.	1.7	50
129	Interaction of formic acid with Fe2O3 powders under different atmospheres: an XPS and FTIR study. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 3671-3676.	1.7	36
130	Microstructural characterization of carbon films and films produced by implantation. Journal of Physics Condensed Matter, 1997, 9, 1743-1761.	1.8	8
131	XPS characterization of gel-derived silicon oxycarbide glasses. Materials Letters, 1996, 27, 1-5.	2.6	122
132	An experimental and theoretical study of the interaction of CH3OH and CH3SH with ZnO. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3247.	1.7	23
133	Chemico-Physical Interactions Among the Constituents of Historical Walls in Venice. Materials Research Society Symposia Proceedings, 1995, 352, 771.	0.1	6
134	Influence of nitrogen doping on different properties of a-C:H. Thin Solid Films, 1995, 268, 22-29.	1.8	43
135	An X-ray photoelectron spectroscopy study of the surface composition of CoxFe80â°xSi10B10 metallic glasses. Journal of Alloys and Compounds, 1995, 226, 213-221.	5 . 5	4
136	Angle-resolved X-ray photoelectron spectroscopy contribution to elucidation of the mechanism of cathodic deposition of Asî—,Sb alloys. Journal of Electroanalytical Chemistry, 1994, 374, 37-43.	3.8	2
137	A study of sputtered Fe-Al multilayers and their stability at 400 K in an oxidizing atmosphere. Journal of Magnetism and Magnetic Materials, 1994, 133, 504-507.	2.3	2
138	Aging of Fe-Al thin film multilayers in an oxidizing environment in the 300–400 K range. Hyperfine Interactions, 1994, 92, 1249-1255.	0.5	3
139	Study of Fe-Al thin films oxidized at room temperature. Hyperfine Interactions, 1993, 78, 327-331.	0.5	2
140	Chemical interactions in titanium- and tungsten-implanted fused silica. Journal of Non-Crystalline Solids, 1993, 162, 205-216.	3.1	43
141	Chemical and compositional changes induced by N+implantation in amorphous SiC films. Journal of Applied Physics, 1993, 74, 2013-2020.	2.5	41
142	Xps Study of the Nitridation Process of A Polytitanocarbosilane into Si-Ti-N-O Ceramics. Materials Research Society Symposia Proceedings, 1992, 271, 899.	0.1	1
143	Electrochemical and XPS studies of the effects of gamma-ray irradiation on the passive film on 446 stainless steel. Corrosion Science, 1992, 33, 729-734.	6.6	7
144	Tin, Tic and Ti(C, N) film characterization and its relationship to tribological behaviour. Surface and Interface Analysis, 1992, 18, 525-531.	1.8	119

Antonella Glisenti

#	Article	IF	CITATIONS
145	High fluence implantation in glasses: chemical interactions. Nuclear Instruments & Methods in Physics Research B, 1992, 65, IN6-374.	1.4	37
146	Surface characterization of Fe75B20TM5 (TM â‰; V, Co) amorphous ribbons by X-ray photoelectron spectroscopy. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1990, 61, 691-699.	0.6	2
147	The pyrolysis process of a polytitanocarbosilane into SiC/TiC ceramics: An XPS study. Journal of Materials Research, 1990, 5, 1958-1962.	2.6	24