
Huancong Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9256276/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents. International Journal of Greenhouse Gas Control, 2015, 40, 26-54.	4.6	403
2	Catalytic and non catalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents. International Journal of Greenhouse Gas Control, 2014, 26, 39-50.	4.6	154
3	Comprehensive mass transfer and reaction kinetics studies of CO2 absorption into aqueous solutions of blended MDEA–MEA. Chemical Engineering Journal, 2012, 209, 501-512.	12.7	125
4	Practical experience in post-combustion CO2 capture using reactive solvents in large pilot and demonstration plants. International Journal of Greenhouse Gas Control, 2015, 40, 6-25.	4.6	105
5	Investigation of Mass-Transfer Performance for CO ₂ Absorption into Diethylenetriamine (DETA) in a Randomly Packed Column. Industrial & Engineering Chemistry Research, 2012, 51, 12058-12064.	3.7	83
6	13C NMR Spectroscopy of a Novel Amine Species in the DEAB–CO2–H2O system: VLE Model. Industrial & Engineering Chemistry Research, 2012, 51, 8608-8615.	3.7	63
7	Part 5b: Solvent chemistry: reaction kinetics of CO ₂ absorption into reactive amine solutions. Carbon Management, 2012, 3, 201-220.	2.4	60
8	Catalytic-CO ₂ -Desorption Studies of DEA and DEA–MEA Blended Solutions with the Aid of Lewis and BrAֻnsted Acids. Industrial & Engineering Chemistry Research, 2018, 57, 11505-11516.	3.7	35
9	1D NMR Analysis of a Quaternary MEA–DEAB–CO ₂ –H ₂ O Amine System: Liquid Phase Speciation and Vapor–Liquid Equilibria at CO ₂ Absorption and Solvent Regeneration Conditions. Industrial & Engineering Chemistry Research, 2014, 53, 8577-8591.	3.7	34
10	Biotemplating Synthesis of Graphitic Carbon-Coated TiO ₂ and Its Application as Efficient Visible-Light-Driven Photocatalyst for Cr ⁶⁺ Remove. ACS Sustainable Chemistry and Engineering, 2017, 5, 3938-3944.	6.7	33
11	Studies of the coordination effect of DEA-MEA blended amines (within 1 + 4 to 2 + 3 M) under heterogeneous catalysis by means of absorption and desorption parameters. Separation and Purification Technology, 2020, 236, 116179.	7.9	29
12	Facile self-assembly of carbon-free vanadium sulfide nanosheet for stable and high-rate lithium-ion storage. Journal of Colloid and Interface Science, 2022, 607, 145-152.	9.4	25
13	Part 5a: Solvent chemistry: NMR analysis and studies for amine–CO ₂ –H ₂ O systems with vapor–liquid equilibrium modeling for CO ₂ capture processes. Carbon Management, 2012, 3, 185-200.	2.4	23
14	Heterogeneous catalysis of CO2-diethanolamine absorption with MgCO3 and CaCO3 and comparing to non-catalytic CO2-monoethanolamine interactions. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122, 539-555.	1.7	20
15	CO ₂ desorption tests of blended monoethanolamine–diethanolamine solutions to discover novel energy efficient solvents. Asia-Pacific Journal of Chemical Engineering, 2018, 13, e2186.	1.5	20
16	Application of "coordinative effect―into tri-solvent MEA+BEA+AMP blends at concentrations of 0.1 + 2 + 2â^¼0.5 + 2 + 2 mol/L with absorption, desorption and mass transfer analyses. International Journal of Greenhouse Gas Control, 2021, 107, 103267.	4.6	20
17	Enhanced efficiency and stability of Co 0.5 Cd 0.5 S/g-C 3 N 4 composite photo-catalysts for hydrogen evolution from water under visible light irradiation. International Journal of Hydrogen Energy, 2017, 42, 5741-5748.	7.1	19
18	CO2 absorption efficiency of various MEA-DEA blend with aid of CaCO3 and MgCO3 in a batch and semi-batch processes. Separation and Purification Technology, 2019, 220, 102-113.	7.9	19

#	Article	IF	CITATIONS
19	Evaluating Energy-Efficient Solutions of CO ₂ Capture within Tri-solvent MEA+BEA+AMP within 0.1+2+2〓0.5+2+2 mol/L Combining Heterogeneous Acid–Base Catalysts. Industrial & Engineering Chemistry Research, 2021, 60, 7352-7366.	3.7	16
20	The CO2 absorption and desorption analysis of tri-solvent MEA + EAE + AMP compared with MEA + BEA + AMP along with "coordination effects―evaluation. Environmental Science and Research, 2022, 29, 40686-40700.	d5P.sollutior	116
21	Interaction Mechanism Study on Simultaneous Removal of 1,2-Dichlorobenzene and NO over MnO _{<i>x</i>} –CeO ₂ /TiO ₂ Catalysts at Low Temperatures. Industrial & Engineering Chemistry Research, 2021, 60, 4820-4830.	3.7	15
22	The CO2 desorption analysis of tri-solvent MEA+BEA+DEEA with several commercial solid acid catalysts. International Journal of Greenhouse Gas Control, 2022, 116, 103647.	4.6	15
23	Catalytic Solvent Regeneration Using Hot Water During Amine Based CO2 Capture Process. Energy Procedia, 2014, 63, 266-272.	1.8	13
24	Amine regeneration tests on MEA, DEA, and MMEA with respect to cabamate stability analyses. Canadian Journal of Chemical Engineering, 2017, 95, 1471-1479.	1.7	12
25	Experimental investigations and the modeling approach for CO2 solubility in aqueous blended amine systems of monoethanolamine, 2-amino-2-methyl-1-propanol, and 2-(butylamino)ethanol. Environmental Science and Pollution Research, 2022, 29, 69402-69423.	5.3	12
26	Eley–Rideal model of heterogeneous catalytic carbamate formation based on CO ₂ –MEA absorptions with CaCO ₃ , MgCO ₃ and BaCO ₃ . Royal Society Open Science, 2019, 6, 190311.	2.4	10
27	Study of Catalytic CO2 Absorption and Desorption with Tertiary Amine DEEA and 1DMA-2P with the Aid of Solid Acid and Solid Alkaline Chemicals. Molecules, 2019, 24, 1009.	3.8	10
28	Structure–Activity Correlation Analyses of MEA + 3A1P/MAE Isomers with a Coordinative Effect Study. Industrial & Engineering Chemistry Research, 2022, 61, 3091-3103.	3.7	9
29	Kinetics and Reactor Modeling of the Steam Reforming of Methanol over a Mnâ€Promoted Cu/Al Catalyst. Chemical Engineering and Technology, 2015, 38, 2305-2315.	1.5	8
30	Facile access to high-efficiency degradation of tetracycline hydrochloride with structural optimization of TiN. Environmental Science and Pollution Research, 2022, 29, 36854-36864.	5.3	8
31	Catalytic CO ₂ -MEA absorptions with the aid of CaCO ₃ , MgCO ₃ , and BaCO ₃ in the batch and semi-batch processes. Chemical Engineering Communications, 2020, 207, 506-522.	2.6	7
32	Study of "coordinative effect―within biâ€blended amine MEA + AMP and MEA + BEA at 0.1 + 2–0.5 + 2 mo with absorption–desorption parameter analyses. Asia-Pacific Journal of Chemical Engineering, 2021, 16, e2645.	l/L 1.5	7
33	Synthesis of Cu ₃ P/SnO ₂ composites for degradation of tetracycline hydrochloride in wastewater. RSC Advances, 2021, 11, 33471-33480.	3.6	7
34	Synthesis of SnO2 Hollow Microspheres with Efficient Photocatalytic Activity for Tetracycline Hydrochloride. International Journal of Electrochemical Science, 2020, 15, 1539-1547.	1.3	6
35	Oxygen-Induced Elemental Mercury Oxidation in Chemical Looping Combustion of Coal. ACS Omega, 2022, 7, 20959-20967.	3.5	6
36	The rainfall effect onto solidification and stabilization of heavy metal-polluted sediments. Royal	2.4	5

HUANCONG SHI

Society Open Science, 2020, 7, 192234.

3

HUANCONG SHI

#	Article	IF	CITATIONS
37	Molecular understanding of aqueous electrolyte properties and dielectric effect in a CDI system. Chemical Engineering Journal, 2022, 435, 134750.	12.7	5
38	Evaluating CO2 Desorption Activity of Tri-Solvent MEA + EAE + AMP with Various Commercial Solid Acid Catalysts. Catalysts, 2022, 12, 723.	3.5	5
39	Effective energy efficient methods for heat duty reduction for amine-based post-combustion capture process based on the theoretical reactions energy calculation. International Journal of Oil, Gas and Coal Technology, 2017, 14, 172.	0.2	3
40	Effective energy efficient methods for heat duty reduction for amine-based post-combustion capture process based on the theoretical reactions energy calculation. International Journal of Oil, Gas and Coal Technology, 2017, 14, 172.	0.2	3
41	Modeling Study of the Slag Behaviors Based on Temperature–Time–Viscosity of Crystalline Slag in an Entrained-Flow Gasifier. ACS Omega, 2022, 7, 11799-11808.	3.5	0