
Karin J Reinke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9256194/publications.pdf Version: 2024-02-01

KADIN I PEINKE

#	Article	IF	CITATIONS
1	The Potential of Low-Cost 3D Imaging Technologies for Forestry Applications: Setting a Research Agenda for Low-Cost Remote Sensing Inventory Tasks. Forests, 2022, 13, 204.	0.9	12
2	Comparing geostationary and polar-orbiting satellite sensor estimates of Fire Radiative Power (FRP) during the Black Summer Fires (2019–2020) in south-eastern Australia. International Journal of Wildland Fire, 2022, 31, 572-585.	1.0	2
3	Fire Radiative Power (FRP) Values for Biogeographical Region and Individual Geostationary HHMMSS Threshold (BRIGHT) Hotspots Derived from the Advanced Himawari Imager (AHI). Remote Sensing, 2022, 14, 2540.	1.8	5
4	A Seasonal-Window Ensemble-Based Thresholding Technique Used to Detect Active Fires in Geostationary Remotely Sensed Data. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 4947-4956.	2.7	8
5	A comparison of terrestrial and UAS sensors for measuring fuel hazard in a dry sclerophyll forest. International Journal of Applied Earth Observation and Geoinformation, 2021, 95, 102261.	1.4	10
6	The influence of satellite imagery on landscape perception. Landscape Research, 2021, 46, 749-765.	0.7	3
7	High-Resolution Estimates of Fire Severity—An Evaluation of UAS Image and LiDAR Mapping Approaches on a Sedgeland Forest Boundary in Tasmania, Australia. Fire, 2021, 4, 14.	1.2	17
8	Real-Time Detection of Daytime and Night-Time Fire Hotspots from Geostationary Satellites. Remote Sensing, 2021, 13, 1627.	1.8	8
9	Predicting wildfire burns from big geodata using deep learning. Safety Science, 2021, 140, 105276.	2.6	26
10	A comparison between TLS and UAS LiDAR to represent eucalypt crown fuel characteristics. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 181, 295-307.	4.9	10
11	Intercomparison of Himawari-8 AHI-FSA with MODIS and VIIRS active fire products. International Journal of Digital Earth, 2020, 13, 457-473.	1.6	18
12	An early exploration of the use of the Microsoft Azure Kinect for estimation of urban tree Diameter at Breast Height. Remote Sensing Letters, 2020, 11, 963-972.	0.6	15
13	Terrestrial Image-Based Point Clouds for Mapping Near-Ground Vegetation Structure: Potential and Limitations. Fire, 2020, 3, 59.	1.2	4
14	Barapa Country through Barapa eyes: cultural mapping of Gunbower Island, Australia. Journal of Maps, 2020, 16, 13-20.	1.0	3
15	Advances in active fire detection using a multi-temporal method for next-generation geostationary satellite data. International Journal of Digital Earth, 2019, 12, 1030-1045.	1.6	28
16	A Method for Validating the Structural Completeness of Understory Vegetation Models Captured with 3D Remote Sensing. Remote Sensing, 2019, 11, 2118.	1.8	12
17	Using orthoimages generated from oblique terrestrial photography to estimate and monitor vegetation cover. Ecological Indicators, 2019, 101, 91-101.	2.6	12
18	Fuel treatment planning: Fragmenting high fuel load areas while maintaining availability and connectivity of faunal habitat. Applied Mathematical Modelling, 2018, 54, 298-310.	2.2	9

Karin J Reinke

#	Article	IF	CITATIONS
19	Next Generation Fire Detection from Geostationary Satellites. , 2018, , .		1
20	Estimating Fire Background Temperature at a Geostationary Scale—An Evaluation of Contextual Methods for AHI-8. Remote Sensing, 2018, 10, 1368.	1.8	9
21	Implementation of a new algorithm resulting in improvements in accuracy and resolution of SEVIRI hotspot products. Remote Sensing Letters, 2018, 9, 877-885.	0.6	7
22	Nonâ€destructive estimation of aboveâ€ground surface and nearâ€surface biomass using 3D terrestrial remote sensing techniques. Methods in Ecology and Evolution, 2017, 8, 1607-1616.	2.2	53
23	A Broad-Area Method for the Diurnal Characterisation of Upwelling Medium Wave Infrared Radiation. Remote Sensing, 2017, 9, 167.	1.8	12
24	Investigating Surface and Near-Surface Bushfire Fuel Attributes: A Comparison between Visual Assessments and Image-Based Point Clouds. Sensors, 2017, 17, 910.	2.1	12
25	Development of a Multi-Spatial Resolution Approach to the Surveillance of Active Fire Lines Using Himawari-8. Remote Sensing, 2016, 8, 932.	1.8	48
26	An Assessment of Pre- and Post Fire Near Surface Fuel Hazard in an Australian Dry Sclerophyll Forest Using Point Cloud Data Captured Using a Terrestrial Laser Scanner. Remote Sensing, 2016, 8, 679.	1.8	14
27	An optimisation approach for fuel treatment planning to break the connectivity of high-risk regions. Forest Ecology and Management, 2016, 368, 94-104.	1.4	20
28	A model for solving the prescribed burn planning problem. SpringerPlus, 2015, 4, 630.	1.2	12
29	Assessing Metrics for Estimating Fire Induced Change in the Forest Understorey Structure Using Terrestrial Laser Scanning. Remote Sensing, 2015, 7, 8180-8201.	1.8	20
30	Interactions between landcover pattern and geospatial processing methods: Effects on landscape metrics and classification accuracy. Ecological Complexity, 2013, 15, 71-82.	1.4	44
31	Comparison of MODIS and bird in detecting wildfires over large areas in an Australian context. , 2012, , .		0
32	Understanding the flight movements of a non-breeding wandering albatross, Diomedea exulans gibsoni, using a geographic information system. Australian Journal of Zoology, 1998, 46, 171.	0.6	13