Ulrich B Wiesner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/925591/publications.pdf

Version: 2024-02-01

303 papers 27,091 citations

82 h-index 155 g-index

318 all docs

318 docs citations

times ranked

318

28585 citing authors

#	Article	IF	CITATIONS
1	Demonstration of a spaser-based nanolaser. Nature, 2009, 460, 1110-1112.	13.7	1,925
2	Bright and Stable Coreâ^'Shell Fluorescent Silica Nanoparticles. Nano Letters, 2005, 5, 113-117.	4.5	872
3	Fluorescent core–shell silica nanoparticles: towards "Lab on a Particle―architectures for nanobiotechnology. Chemical Society Reviews, 2006, 35, 1028-1042.	18.7	817
4	Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nature Communications, 2015, 6, 6142.	5.8	784
5	Organically Modified Aluminosilicate Mesostructures from Block Copolymer Phases. Science, 1997, 278, 1795-1798.	6.0	641
6	Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Science Translational Medicine, 2014, 6, 260ra149.	5.8	589
7	Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nature Materials, 2008, 7, 222-228.	13.3	571
8	Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. Journal of Clinical Investigation, 2011, 121, 2768-2780.	3.9	558
9	Ordered Mesoporous Materials from Metal Nanoparticle–Block Copolymer Self-Assembly. Science, 2008, 320, 1748-1752.	6.0	553
10	Plasmonic Dye-Sensitized Solar Cells Using Coreâ^'Shell Metalâ^'Insulator Nanoparticles. Nano Letters, 2011, 11, 438-445.	4.5	550
11	Enhancement of Perovskite-Based Solar Cells Employing Core–Shell Metal Nanoparticles. Nano Letters, 2013, 13, 4505-4510.	4. 5	505
12	Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells. Chemical Society Reviews, 2011, 40, 520-535.	18.7	479
13	Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nature Nanotechnology, 2016, 11, 977-985.	15.6	467
14	A Bicontinuous Double Gyroid Hybrid Solar Cell. Nano Letters, 2009, 9, 2807-2812.	4.5	446
15	Fluorescent Silica Nanoparticles with Efficient Urinary Excretion for Nanomedicine. Nano Letters, 2009, 9, 442-448.	4.5	441
16	Mesophase Structure-Mechanical and Ionic Transport Correlations in Extended Amphiphilic Dendrons. Science, 2004, 305, 1598-1601.	6.0	384
17	Designed Fabrication of Silica-Based Nanostructured Particle Systems for Nanomedicine Applications. Advanced Functional Materials, 2008, 18, 3745-3758.	7.8	382
18	Block copolymer self-assembly for nanophotonics. Chemical Society Reviews, 2015, 44, 5076-5091.	18.7	328

#	Article	IF	CITATIONS
19	Crystallization Kinetics of Organic–Inorganic Trihalide Perovskites and the Role of the Lead Anion in Crystal Growth. Journal of the American Chemical Society, 2015, 137, 2350-2358.	6.6	326
20	A 3D Optical Metamaterial Made by Selfâ€Assembly. Advanced Materials, 2012, 24, OP23-7.	11.1	288
21	Core/Shell Fluorescent Silica Nanoparticles for Chemical Sensing: Towards Single-Particle Laboratories. Small, 2006, 2, 723-726.	5. 2	273
22	Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells. ACS Nano, 2014, 8, 4730-4739.	7.3	269
23	Highly Improved Rate Capability for a Lithium-Ion Battery Nano-Li4Ti5O12 Negative Electrode via Carbon-Coated Mesoporous Uniform Pores with a Simple Self-Assembly Method. Advanced Functional Materials, 2011, 21, 4349-4357.	7.8	263
24	Block Copolymerâ^'Ceramic Hybrid Materials from Organically Modified Ceramic Precursors. Chemistry of Materials, 2001, 13, 3464-3486.	3.2	257
25	Hierarchical Porous Polymer Scaffolds from Block Copolymers. Science, 2013, 341, 530-534.	6.0	257
26	Silica Nanoparticle Architecture Determines Radiative Properties of Encapsulated Fluorophores. Chemistry of Materials, 2008, 20, 2677-2684.	3.2	230
27	Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nature Cell Biology, 2020, 22, 1042-1048.	4.6	228
28	Influence of Thermal Processing Protocol upon the Crystallization and Photovoltaic Performance of Organic–Inorganic Lead Trihalide Perovskites. Journal of Physical Chemistry C, 2014, 118, 17171-17177.	1.5	225
29	Tuning Structure and Properties of Graded Triblock Terpolymer-Based Mesoporous and Hybrid Films. Nano Letters, 2011, 11, 2892-2900.	4.5	220
30	Plasmonicâ€Induced Photon Recycling in Metal Halide Perovskite Solar Cells. Advanced Functional Materials, 2015, 25, 5038-5046.	7.8	198
31	Nanotechnology Strategies To Advance Outcomes in Clinical Cancer Care. ACS Nano, 2018, 12, 24-43.	7.3	192
32	Ultrasmall Sub-10 nm Near-Infrared Fluorescent Mesoporous Silica Nanoparticles. Journal of the American Chemical Society, 2012, 134, 13180-13183.	6.6	190
33	Study of the interlayer expansion mechanism and thermal–mechanical properties of surface-initiated epoxy nanocomposites. Polymer, 2002, 43, 4895-4904.	1.8	188
34	Nanoparticle-tuned assembly and disassembly of mesostructured silica hybrids. Nature Materials, 2007, 6, 156-161.	13.3	186
35	Intracellular delivery of core–shell fluorescent silica nanoparticles. Biomaterials, 2008, 29, 1526-1532.	5.7	178
36	Synthesis, Characterization, and Electrocatalytic Activity of PtBi and PtPb Nanoparticles Prepared by Borohydride Reduction in Methanol. Chemistry of Materials, 2006, 18, 3365-3372.	3.2	174

3

#	Article	lF	Citations
37	Enhanced Efficiency and Stability of Perovskite Solar Cells Through Ndâ€Doping of Mesostructured TiO ₂ . Advanced Energy Materials, 2016, 6, 1501868.	10.2	157
38	Structure, Mobility, and Interface Characterization of Self-Organized Organicâ [°] Inorganic Hybrid Materials by Solid-State NMR. Journal of the American Chemical Society, 1999, 121, 5727-5736.	6.6	156
39	Multinuclear solid-state-NMR studies of hybrid organic-inorganic materials. Advanced Materials, 1997, 9, 814-817.	11.1	155
40	Self-Cleaning Antireflective Optical Coatings. Nano Letters, 2013, 13, 5329-5335.	4.5	155
41	Clinically-translated silica nanoparticles as dual-modality cancer-targeted probes for image-guided surgery and interventions. Integrative Biology (United Kingdom), 2013, 5, 74-86.	0.6	153
42	Multicompartment Mesoporous Silica Nanoparticles with Branched Shapes: An Epitaxial Growth Mechanism. Science, 2013, 340, 337-341.	6.0	151
43	Transient laser heating induced hierarchical porous structures from block copolymer–directed self-assembly. Science, 2015, 349, 54-58.	6.0	145
44	Poly(ethylene oxide-b-isoprene) Diblock Copolymer Phase Diagram. Macromolecules, 2001, 34, 2947-2957.	2,2	144
45	Generalized Route to Metal Nanoparticles with Liquid Behavior. Journal of the American Chemical Society, 2006, 128, 12074-12075.	6.6	141
46	Block copolymer-nanoparticle hybrid self-assembly. Progress in Polymer Science, 2015, 40, 3-32.	11.8	139
47	Control of Solidâ€State Dyeâ€Sensitized Solar Cell Performance by Blockâ€Copolymerâ€Directed TiO ₂ Synthesis. Advanced Functional Materials, 2010, 20, 1787-1796.	7.8	131
48	Ultrasmall targeted nanoparticles with engineered antibody fragments for imaging detection of HER2-overexpressing breast cancer. Nature Communications, 2018, 9, 4141.	5.8	126
49	Lamellar diblock copolymers under large amplitude oscillatory shear flow: Order and dynamics. Macromolecular Chemistry and Physics, 1997, 198, 3319-3352.	1.1	124
50	Block copolymer derived 3-D interpenetrating multifunctional gyroidal nanohybrids for electrical energy storage. Energy and Environmental Science, 2018, 11, 1261-1270.	15.6	124
51	The Plumber's Nightmare:1A New Morphology in Block Copolymerâ-"Ceramic Nanocomposites and Mesoporous Aluminosilicates. Journal of the American Chemical Society, 2003, 125, 13084-13093.	6.6	122
52	One-Pot Synthesis of Platinum-Based Nanoparticles Incorporated into Mesoporous Niobium Oxideâ^'Carbon Composites for Fuel Cell Electrodes. Journal of the American Chemical Society, 2009, 131, 9389-9395.	6.6	122
53	Threeâ€Dimensionally Isotropic Negative Refractive Index Materials from Block Copolymer Selfâ€Assembled Chiral Gyroid Networks. Angewandte Chemie - International Edition, 2011, 50, 11985-11989.	7.2	116
54	Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure. Journal of the American Chemical Society, 2011, 133, 172-175.	6.6	115

#	Article	IF	Citations
55	Nano-objects with Controlled Shape, Size, and Composition from Block Copolymer Mesophases. Advanced Materials, 1999, 11, 141-146.	11.1	113
56	A silica sol–gel design strategy for nanostructured metallic materials. Nature Materials, 2012, 11, 460-467.	13.3	112
57	An infrared spectroscopic study of photo-induced reorientation in dye containing liquid-crystalline polymers. Liquid Crystals, 1992, 11, 251-267.	0.9	111
58	Microphase separation in poly(isoprene-b-ethylene oxide) diblock copolymer melts. I. Phase state and kinetics of the order-to-order transitions. Journal of Chemical Physics, 1999, 110, 652-663.	1.2	109
59	Core-shell silica nanoparticles as fluorescent labels for nanomedicine. Journal of Biomedical Optics, 2007, 12, 1.	1.4	109
60	Functional Tomographic Fluorescence Imaging of pH Microenvironments in Microbial Biofilms by Use of Silica Nanoparticle Sensors. Applied and Environmental Microbiology, 2009, 75, 7426-7435.	1.4	109
61	Block copolymer directed synthesis of mesoporous TiO2for dye-sensitized solar cells. Soft Matter, 2009, 5, 134-139.	1.2	108
62	Block Copolymer Self-Assembly–Directed Single-Crystal Homo- and Heteroepitaxial Nanostructures. Science, 2010, 330, 214-219.	6.0	108
63	Hierarchically Porous Materials from Block Copolymers. Chemistry of Materials, 2014, 26, 339-347.	3.2	107
64	Control of Ultrasmall Sub-10 nm Ligand-Functionalized Fluorescent Core–Shell Silica Nanoparticle Growth in Water. Chemistry of Materials, 2015, 27, 4119-4133.	3.2	107
65	Controlled degradation of epoxy networks: analysis of crosslink density and glass transition temperature changes in thermally reworkable thermosets. Polymer, 2004, 45, 1939-1950.	1.8	106
66	Tailored Living Block Copolymerization: Multiblock Poly(cyclohexene carbonate)s with Sequence Control. Macromolecules, 2011, 44, 1110-1113.	2.2	105
67	Block copolymer self-assembly–directed synthesis of mesoporous gyroidal superconductors. Science Advances, 2016, 2, e1501119.	4.7	104
68	Designing block copolymer architectures for targeted membrane performance. Polymer, 2014, 55, 347-353.	1.8	103
69	Solution Small-Angle X-ray Scattering as a Screening and Predictive Tool in the Fabrication of Asymmetric Block Copolymer Membranes. ACS Macro Letters, 2012, 1, 614-617.	2.3	100
70	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1991, 12, 457-464.	1,1	98
71	One-Pot Synthesis of Intermetallic Electrocatalysts in Ordered, Large-Pore Mesoporous Carbon/Silica toward Formic Acid Oxidation. ACS Nano, 2012, 6, 6870-6881.	7.3	98
72	Additive-Driven Phase-Selective Chemistry in Block Copolymer Thin Films: The Convergence of Top–Down and Bottom–Up Approaches. Advanced Materials, 2004, 16, 953-957.	11.1	97

#	Article	IF	CITATIONS
73	Frequency Dependence of Orientation in Dynamically Sheared Diblock Copolymers. Macromolecules, 1995, 28, 778-781.	2.2	94
74	Tailoring Pore Size of Graded Mesoporous Block Copolymer Membranes: Moving from Ultrafiltration toward Nanofiltration. Macromolecules, 2015, 48, 6153-6159.	2.2	94
75	Metal Oxide Containing Mesoporous Silica with Bicontinuous "Plumber's Nightmare―Morphology from a Block Copolymer-Hybrid Mesophase. Angewandte Chemie - International Edition, 2001, 40, 1207-1211.	7.2	93
76	Synthesis and Characterization of Gyroidal Mesoporous Carbons and Carbon Monoliths with Tunable Ultralarge Pore Size. ACS Nano, 2014, 8, 731-743.	7.3	92
77	Ordered Mesoporous Ceramics Stable up to 1500 $\hat{A}^{\circ}C$ from Diblock Copolymer Mesophases. Journal of the American Chemical Society, 2004, 126, 14708-14709.	6.6	89
78	Improved conductivity in dye-sensitised solar cells through block-copolymer confined TiO ₂ crystallisation. Energy and Environmental Science, 2011, 4, 225-233.	15.6	88
79	Direct Crystallization Route to Methylammonium Lead Iodide Perovskite from an Ionic Liquid. Chemistry of Materials, 2015, 27, 3197-3199.	3.2	87
80	Symmetric diblock copolymers under large amplitude oscillatory shear flow: Entanglement effect. Journal of Chemical Physics, 1995, 103, 4784-4793.	1.2	86
81	Widely Tunable Morphologies in Block Copolymer Thin Films Through Solvent Vapor Annealing Using Mixtures of Selective Solvents. Advanced Functional Materials, 2015, 25, 3057-3065.	7.8	86
82	Self-assembly of highly symmetrical, ultrasmall inorganic cages directed by surfactant micelles. Nature, 2018, 558, 577-580.	13.7	86
83	General Method for the Synthesis of Hierarchical Nanocrystal-Based Mesoporous Materials. ACS Nano, 2012, 6, 6386-6399.	7.3	85
84	Controlling Growth of Ultrasmall Sub-10 nm Fluorescent Mesoporous Silica Nanoparticles. Chemistry of Materials, 2013, 25, 677-691.	3.2	82
85	Tunable 3D Extended Selfâ€Assembled Gold Metamaterials with Enhanced Light Transmission. Advanced Materials, 2013, 25, 2713-2716.	11.1	80
86	Highly Crystalline Inverse Opal Transition Metal Oxides via a Combined Assembly of Soft and Hard Chemistries. Journal of the American Chemical Society, 2008, 130, 8882-8883.	6.6	79
87	Organization of Nanoparticles in Polymer Brushes. Journal of the American Chemical Society, 2009, 131, 1670-1671.	6.6	76
88	Elucidating the Mechanism of Silica Nanoparticle PEGylation Processes Using Fluorescence Correlation Spectroscopies. Chemistry of Materials, 2016, 28, 1537-1545.	3.2	76
89	Controlling Nanoparticle Location via Confined Assembly in Electrospun Block Copolymer Nanofibers. Small, 2008, 4, 2067-2073.	5.2	75
90	Liquid Crystalline Rodâ^'Coil Block Copolymers by Stable Free Radical Polymerization:Â Synthesis, Morphology, and Rheology. Macromolecules, 2003, 36, 3357-3364.	2.2	74

#	Article	IF	CITATIONS
91	Ordered mesoporous silica nanoparticles with and without embedded iron oxide nanoparticles: structure evolution during synthesis. Journal of Materials Chemistry, 2010, 20, 7807.	6.7	74
92	Asymmetric Organic–Inorganic Hybrid Membrane Formation via Block Copolymer–Nanoparticle Co-Assembly. Nano Letters, 2013, 13, 5323-5328.	4.5	71
93	Multicomponent Nanomaterials with Complex Networked Architectures from Orthogonal Degradation and Binary Metal Backfilling in ABC Triblock Terpolymers. Journal of the American Chemical Society, 2015, 137, 6026-6033.	6.6	70
94	Directed Motion and Cargo Transport Through Propagation of Polymer-Gel Volume Phase Transitions. Advanced Materials, 2005, 17, 1869-1873.	11.1	69
95	The Next 100 Years of Polymer Science. Macromolecular Chemistry and Physics, 2020, 221, 2000216.	1.1	69
96	Dye structure–optical property correlations in near-infrared fluorescent core-shell silica nanoparticles. Journal of Materials Chemistry, 2009, 19, 6341.	6.7	68
97	Morphology Diagram of a Diblock Copolymerâ^'Aluminosilicate Nanoparticle System. Chemistry of Materials, 2009, 21, 5397-5405.	3.2	68
98	The Synthesis of Spherical Mesoporous Molecular Sieves MCM-48 with Heteroatoms Incorporated into the Silica Framework. Advanced Materials, 1999, 11, 1194-1198.	11.1	66
99	Carbon–Sulfur Composites from Cylindrical and Gyroidal Mesoporous Carbons with Tunable Properties in Lithium–Sulfur Batteries. Chemistry of Materials, 2015, 27, 3349-3357.	3.2	65
100	Ordered Three- and Five-ply Nanocomposites from ABC Block Terpolymer Microphase Separation with Niobia and Aluminosilicate Sols. Chemistry of Materials, 2009, 21, 5466-5473.	3.2	64
101	Threshold Strain Value for Perpendicular Orientation in Dynamically Sheared Diblock Copolymers. Macromolecules, 1997, 30, 660-662.	2.2	63
102	Integrating Structure Control over Multiple Length Scales in Porous High Temperature Ceramics with Functional Platinum Nanoparticles. Nano Letters, 2009, 9, 2756-2762.	4.5	63
103	Nanohybrids from Liquid Crystalline Extended Amphiphilic Dendrimers. Journal of the American Chemical Society, 2004, 126, 4070-4071.	6.6	61
104	Synthesis and Formation Mechanism of Aminated Mesoporous Silica Nanoparticles. Chemistry of Materials, 2012, 24, 3895-3905.	3.2	61
105	Double flip of orientation for a lamellar diblock copolymer under shear. Journal of Chemical Physics, 1999, 110, 8225-8228.	1.2	60
106	Direct Access to Bicontinuous Skeletal Inorganic Plumber's Nightmare Networks from Block Copolymers. Angewandte Chemie - International Edition, 2005, 44, 1226-1229.	7.2	60
107	Understanding the structure and performance of self-assembled triblock terpolymer membranes. Journal of Membrane Science, 2013, 444, 461-468.	4.1	59
108	Target-or-Clear Zirconium-89 Labeled Silica Nanoparticles for Enhanced Cancer-Directed Uptake in Melanoma: A Comparison of Radiolabeling Strategies. Chemistry of Materials, 2017, 29, 8269-8281.	3.2	59

#	Article	IF	Citations
109	Ultrasmall Core-Shell Silica Nanoparticles for Precision Drug Delivery in a High-Grade Malignant Brain Tumor Model. Clinical Cancer Research, 2020, 26, 147-158.	3.2	59
110	Use of Ultrasmall Core-Shell Fluorescent Silica Nanoparticles for Image-Guided Sentinel Lymph Node Biopsy in Head and Neck Melanoma. JAMA Network Open, 2021, 4, e211936.	2.8	59
111	Networked and chiral nanocomposites from ABC triblock terpolymer coassembly with transition metal oxide nanoparticles. Journal of Materials Chemistry, 2012, 22, 1078-1087.	6.7	58
112	Triblockâ€Terpolymerâ€Directed Selfâ€Assembly of Mesoporous TiO ₂ : Highâ€Performance Photoanodes for Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2012, 2, 676-682.	10.2	58
113	Linking experiment and theory for three-dimensional networked binary metal nanoparticle–triblock terpolymer superstructures. Nature Communications, 2014, 5, 3247.	5.8	58
114	Cancer-Targeting Ultrasmall Silica Nanoparticles for Clinical Translation: Physicochemical Structure and Biological Property Correlations. Chemistry of Materials, 2017, 29, 8766-8779.	3.2	58
115	Nanoparticle Synthesis via the Photochemical Polythiol Process. Journal of the American Chemical Society, 2007, 129, 10072-10073.	6.6	57
116	Determination of Ion Cluster Sizes and Cluster-to-Cluster Distances in Ionomers by Four-Pulse Double Electron Electron Resonance Spectroscopy. Macromolecules, 2000, 33, 7812-7818.	2.2	56
117	Silica-Type Mesostructures from Block Copolymer Phases:Â Formation Mechanism and Generalization to the Dense Nanoparticle Regime. Macromolecules, 2004, 37, 5665-5670.	2.2	56
118	Self-Assembly Approach toward Magnetic Silica-Type Nanoparticles of Different Shapes from Reverse Block Copolymer Mesophases. Journal of the American Chemical Society, 2003, 125, 13310-13311.	6.6	55
119	Direct Synthesis of Inverse Hexagonally Ordered Diblock Copolymer/Polyoxometalate Nanocomposite Films. Journal of the American Chemical Society, 2012, 134, 12685-12692.	6.6	54
120	Generalized Access to Mesoporous Inorganic Particles and Hollow Spheres from Multicomponent Polymer Blends. Advanced Materials, 2018, 30, e1801127.	11.1	52
121	Synthesis and Self-Assembly of Amphiphilic Dendrimers Based on Aliphatic Polyether-Type Dendritic Cores. Macromolecules, 2004, 37, 4227-4234.	2.2	51
122	Formation pathways of mesoporous silica nanoparticles with dodecagonal tiling. Nature Communications, 2017, 8, 252.	5.8	51
123	Soft self-assembly of Weyl materials for light and sound. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3655-E3664.	3.3	51
124	Metal Nanoparticleâ^'Block Copolymer Composite Assembly and Disassembly. Chemistry of Materials, 2009, 21, 5578-5584.	3.2	50
125	Time-resolved GISAXS and cryo-microscopy characterization of block copolymer membrane formation. Polymer, 2014, 55, 1327-1332.	1.8	49
126	Intraoperative mapping of sentinel lymph node metastases using a clinically translated ultrasmall silica nanoparticle. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 535-553.	3.3	49

#	Article	IF	CITATIONS
127	Monolithic Gyroidal Mesoporous Mixed Titanium–Niobium Nitrides. ACS Nano, 2014, 8, 8217-8223.	7.3	47
128	Annealing Effects on Orientation in Dynamically Sheared Diblock Copolymers. Macromolecules, 1996, 29, 5427-5431.	2.2	45
129	A Re-Evaluation of the Morphology of a Bicontinuous Block Copolymerâ^'Ceramic Material. Macromolecules, 2007, 40, 8974-8982.	2.2	45
130	Block Copolymer Self-Assembly Directed Hierarchically Structured Materials from Nonequilibrium Transient Laser Heating. Macromolecules, 2019, 52, 395-409.	2.2	45
131	Solid Hybrid Polymer Electrolyte Networks: Nano-Structurable Materials for Lithium Batteries. Advanced Materials, 2002, 14, 1134.	11.1	44
132	Synthesis and Characterization of $\hat{l}\pm, \hat{l}\%$ -Macrozwitterionic Block Copolymers of Styrene and Isoprene. Macromolecules, 1996, 29, 4865-4870.	2.2	43
133	Influenza Virus-Membrane Fusion Triggered by Proton Uncaging for Single Particle Studies of Fusion Kinetics. Analytical Chemistry, 2012, 84, 8480-8489.	3.2	43
134	Synthesis and Characterization of Amphiphilic Poly(ethylene oxide)-block-poly(hexyl methacrylate) Copolymers. Macromolecular Chemistry and Physics, 2003, 204, 1047-1055.	1.1	42
135	Dynamics of Nanoparticles in Entangled Polymer Solutions. Langmuir, 2018, 34, 241-249.	1.6	42
136	Microphase Reorientation in Block Copolymer Melts As Detected via FT Rheology and 2D SAXS. Macromolecules, 2002, 35, 3198-3204.	2.2	41
137	Synthesis and characterization of magnetically active carbon nanofiber/iron oxide composites with hierarchical pore structures. Nanotechnology, 2008, 19, 455612.	1.3	41
138	Structure and dynamics of polyelectrolyte-surfactant complexes as revealed by solid state NMR. Macromolecular Chemistry and Physics, 1996, 197, 2713-2727.	1.1	40
139	Large Stokesâ€Shift Fluorescent Silica Nanoparticles with Enhanced Emission Over Free Dye for Single Excitation Multiplexing. Macromolecular Rapid Communications, 2009, 30, 1907-1910.	2.0	40
140	Monolithic route to efficient dye-sensitized solar cells employing diblock copolymers for mesoporous TiO2. Journal of Materials Chemistry, 2010, 20, 1261-1268.	6.7	40
141	Direct Access to Mesoporous Crystalline TiO ₂ /Carbon Composites with Large and Uniform Pores for Use as Anode Materials in Lithium Ion Batteries. Macromolecular Chemistry and Physics, 2011, 212, 383-390.	1.1	40
142	Characterization of Sulfur and Nanostructured Sulfur Battery Cathodes in Electron Microscopy Without Sublimation Artifacts. Microscopy and Microanalysis, 2017, 23, 155-162.	0.2	40
143	Melanocortin-1 Receptor-Targeting Ultrasmall Silica Nanoparticles for Dual-Modality Human Melanoma Imaging. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4379-4393.	4.0	40
144	Ordered Mesoporous Microcapsules from Double Emulsion Confined Block Copolymer Self-Assembly. ACS Nano, 2021, 15, 3490-3499.	7.3	40

#	Article	IF	Citations
145	Nucleation and growth in order-to-order transitions of a block copolymer. Europhysics Letters, 2000, 50, 182-188.	0.7	39
146	Relative Quantum Yield Measurements of Coumarin Encapsulated in Core-Shell Silica Nanoparticles. Journal of Fluorescence, 2010, 20, 67-72.	1.3	39
147	Dynamically Responsive Multifunctional Asymmetric Triblock Terpolymer Membranes with Intrinsic Binding Sites for Covalent Molecule Attachment. Chemistry of Materials, 2016, 28, 3870-3876.	3.2	38
148	Gyroid Optical Metamaterials: Calculating the Effective Permittivity of Multidomain Samples. ACS Photonics, 2016, 3, 1888-1896.	3.2	38
149	Electron spin relaxation due to small-angle motion: Theory for the canonical orientations and application to hierarchic cage dynamics in ionomers. Journal of Chemical Physics, 2003, 119, 11829-11846.	1.2	37
150	Ultrafast Nonlinear Response of Gold Gyroid Three-Dimensional Metamaterials. Physical Review Applied, 2014, 2, .	1.5	37
151	Molecular phenotyping and image-guided surgical treatment of melanoma using spectrally distinct ultrasmall core-shell silica nanoparticles. Science Advances, 2019, 5, eaax5208.	4.7	36
152	Rheology of lamellar polystyrene-block-polyisoprene diblock copolymers. Macromolecular Chemistry and Physics, 1998, 199, 1771-1784.	1.1	35
153	Layerâ€byâ€Layer Formation of Blockâ€Copolymerâ€Derived TiO ₂ for Solidâ€State Dyeâ€Sensitized Solar Cells. Small, 2012, 8, 432-440.	5.2	35
154	Ordered mesoporous titania from highly amphiphilic block copolymers: tuned solution conditions enable highly ordered morphologies and ultra-large mesopores. Journal of Materials Chemistry A, 2015, 3, 11478-11492.	5.2	35
155	<i>In Situ</i> Study of Evaporation-Induced Surface Structure Evolution in Asymmetric Triblock Terpolymer Membranes. Macromolecules, 2016, 49, 4195-4201.	2.2	35
156	Pathways to Mesoporous Resin/Carbon Thin Films with Alternating Gyroid Morphology. ACS Nano, 2018, 12, 347-358.	7.3	35
157	Targeted melanoma radiotherapy using ultrasmall 177Lu-labeled α-melanocyte stimulating hormone-functionalized core-shell silica nanoparticles. Biomaterials, 2020, 241, 119858.	5.7	35
158	Effect of Filler Dimensionality on the Orderâ-'Disorder Transition of a Model Block Copolymer Nanocomposite. Macromolecules, 2002, 35, 4862-4865.	2.2	34
159	Mesoporous titanium and niobium nitrides as conductive and stable electrocatalyst supports in acid environments. Chemical Communications, 2017, 53, 7250-7253.	2.2	34
160	EPR Studies on Telechelic Polymers:Â Characterization of Ion Multiplets. Macromolecules, 1997, 30, 3832-3838.	2.2	33
161	Salt-Induced Switching of Microdomain Morphology of Ionically Functionalized Diblock Copolymers. Macromolecules, 1999, 32, 2806-2809.	2.2	33
162	Teaching hydrogels how to move like an earthworm. Soft Matter, 2007, 3, 939.	1.2	33

#	Article	IF	CITATIONS
163	Characterization of the motion of spin probes and spin labels in amorphous polymers with two-dimensional field-step ELDOR. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 1093-1104.	2.4	32
164	Nanostructured carbon–crystalline titania composites from microphase separation of poly(ethylene) Tj ETQq0	0 <u>9 rg</u> BT /	Overlock 10 T
165	Strong Circular Dichroism in Single Gyroid Optical Metamaterials. Advanced Optical Materials, 2020, 8, 1902131.	3.6	32
166	Three-Component Porousâ^'Carbonâ^'Titania Nanocomposites through Self-Assembly of ABCBA Block Terpolymers with Titania Sols. Macromolecules, 2009, 42, 6682-6687.	2.2	31
167	Kinetic Rates of Thermal Transformations and Diffusion in Polymer Systems Measured during Sub-millisecond Laser-Induced Heating. ACS Nano, 2012, 6, 5830-5836.	7.3	31
168	Modular and Orthogonal Post-PEGylation Surface Modifications by Insertion Enabling Penta-Functional Ultrasmall Organic-Silica Hybrid Nanoparticles. Chemistry of Materials, 2017, 29, 6840-6855.	3.2	31
169	Self-Assembly of Ionically End-Capped Diblock Copolymers. Macromolecules, 1998, 31, 4828-4837.	2.2	30
170	Orientation Flip of Lamellar Polystyreneâ^Polyisoprene Diblock Copolymers under Extrusion. Macromolecules, 1999, 32, 1315-1317.	2.2	30
171	Characterization of Ionic Clusters in Different Ionically Functionalized Diblock Copolymers by CW EPR and Four-Pulse Double Electronâ°Electron Resonance. Macromolecules, 2001, 34, 5555-5560.	2.2	30
172	Hexagonally Patterned Lamellar Morphology in ABC Triblock Copolymer/Aluminosilicate Nanocomposites. Chemistry of Materials, 2008, 20, 3278-3287.	3.2	30
173	Morphology Control in Block Copolymer/Polymer Derived Ceramic Precursor Nanocomposites. Macromolecules, 2008, 41, 8745-8752.	2.2	30
174	Access to Ordered Porous Molybdenum Oxycarbide/Carbon Nanocomposites. Angewandte Chemie - International Edition, 2012, 51, 12892-12896.	7.2	29
175	Single Dye Molecule Behavior in Fluorescent Core–Shell Silica Nanoparticles. Chemistry of Materials, 2012, 24, 361-372.	3.2	29
176	Self-Assembled Gyroidal Mesoporous Polymer-Derived High Temperature Ceramic Monoliths. Chemistry of Materials, 2016, 28, 2131-2137.	3.2	29
177	Optical Imaging of Large Gyroid Grains in Block Copolymer Templates by Confined Crystallization. Macromolecules, 2017, 50, 6255-6262.	2.2	29
178	Self-Assembly of Four-Layer Woodpile Structure from Zigzag ABC Copolymer/Aluminosilicate Concertinas. Macromolecules, 2008, 41, 852-859.	2.2	28
179	Ultrasmall Integrinâ€Targeted Silica Nanoparticles Modulate Signaling Events and Cellular Processes in a Concentrationâ€Dependent Manner. Small, 2015, 11, 1721-1732.	5.2	28
180	Nanostructure and Shape Control in Polymer-Ceramic Hybrids from Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 1 Chemistry and Physics, 2004, 205, 1021-1030.	0 Tf 50 67 1.1	7 Td (oxide)-bl 27

#	Article	IF	CITATION
181	Synthesis of Amphiphilic ABC Triblock Copolymers with PEO as the Middle Block. Macromolecular Rapid Communications, 2004, 25, 1889-1894.	2.0	27
182	Ordered gyroidal tantalum oxide photocatalysts: eliminating diffusion limitations and tuning surface barriers. Nanoscale, 2016, 8, 16694-16701.	2.8	27
183	Ultrasmall Renally Clearable Silica Nanoparticles Target Prostate Cancer. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43879-43887.	4.0	27
184	Dye Encapsulation in Fluorescent Coreâ€"Shell Silica Nanoparticles as Probed by Fluorescence Correlation Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 9813-9823.	1.5	27
185	Salt-Controlled Lamellar Spacing in Ionically End-Capped Symmetric Diblock Copolymers. Macromolecules, 1997, 30, 6698-6701.	2.2	26
186	Mesoscopic structure prediction of nanoparticle assembly and coassembly: Theoretical foundation. Journal of Chemical Physics, 2010, 133, 194108.	1.2	26
187	Ultrasmall dual-modality silica nanoparticle drug conjugates: Design, synthesis, and characterization. Bioorganic and Medicinal Chemistry, 2015, 23, 7119-7130.	1.4	26
188	Stimuli-Responsive Shapeshifting Mesoporous Silica Nanoparticles. Nano Letters, 2016, 16, 651-655.	4.5	26
189	Surface Reconstruction Limited Conductivity in Blockâ€Copolymer Li Battery Electrolytes. Advanced Functional Materials, 2019, 29, 1905977.	7.8	26
190	Symmetric diblock copolymers under large amplitude oscillatory shear flow: Dual frequency experiments. Journal of Chemical Physics, 1997, 106, 2961-2969.	1.2	25
191	Synthesis and characterization of block copolymer/ceramic precursor nanocomposites based on a polysilazane. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 3346-3350.	2.4	25
192	One-Pot Synthesis of Hierarchically Macro- and Mesoporous Carbon Materials with Graded Porosity. ACS Macro Letters, 2015, 4, 477-482.	2.3	25
193	A crystalline and 3D periodically ordered mesoporous quaternary semiconductor for photocatalytic hydrogen generation. Nanoscale, 2018, 10, 3225-3234.	2.8	25
194	Localising functionalised gold-nanoparticles in murine spinal cords by X-ray fluorescence imaging and background-reduction through spatial filtering for human-sized objects. Scientific Reports, 2018, 8, 16561.	1.6	25
195	Nanomanufacturing of continuous composite nanofibers with confinement-induced morphologies. Polymer Chemistry, 2010, 1, 1001.	1.9	24
196	Predicting Chiral Nanostructures, Lattices and Superlattices in Complex Multicomponent Nanoparticle Self-Assembly. Nano Letters, 2012, 12, 3218-3223.	4.5	24
197	Exploring Periodic Bicontinuous Cubic Network Structures with Complete Phononic Bandgaps. Journal of Physical Chemistry C, 2017, 121, 22347-22352.	1.5	24
198	Metasurfaces Atop Metamaterials: Surface Morphology Induces Linear Dichroism in Gyroid Optical Metamaterials. Advanced Materials, 2019, 31, 1803478.	11.1	24

#	Article	IF	Citations
199	Diffusion of Tracer Molecules within Symmetric Diblock Copolymers. Macromolecules, 1995, 28, 8287-8294.	2.2	23
200	Ultrasmall PEGylated and Targeted Core–Shell Silica Nanoparticles Carrying Methylene Blue Photosensitizer. ACS Biomaterials Science and Engineering, 2020, 6, 256-264.	2.6	23
201	Flow-Induced Alignment of Block Copolymerâ°'Sol Nanoparticle Coassemblies toward Oriented Bulk Polymerâ°'Silica Hybrids. Macromolecules, 2005, 38, 10095-10100.	2.2	22
202	Composition and Morphology Control in Ordered Mesostructured High‶emperature Ceramics from Block Copolymer Mesophases. Macromolecular Chemistry and Physics, 2007, 208, 2096-2108.	1.1	22
203	Enhanced Photocatalytic Activity of Highly Crystallized and Ordered Mesoporous Titanium Oxide Measured by Silicon Resonators. Analytical Chemistry, 2010, 82, 3032-3037.	3.2	22
204	Gyroidal mesoporous multifunctional nanocomposites via atomic layer deposition. Nanoscale, 2014, 6, 8736.	2.8	22
205	Optical super-resolution microscopy in polymer science. Progress in Polymer Science, 2020, 111, 101312.	11.8	22
206	Bulk Microphase Segregation of an Asymmetric Organometallic-Inorganic Diblock Copolymer:  A Remarkable Example of Concentric Cylinders. Journal of the American Chemical Society, 2003, 125, 6010-6011.	6.6	21
207	Self-assembled ordered mesoporous metals. Pure and Applied Chemistry, 2009, 81, 73-84.	0.9	21
208	Block Copolymer Directed Nanoporous Metal Thin Films. Macromolecular Rapid Communications, 2010, 31, 1960-1964.	2.0	21
209	Graded porous inorganic materials derived from self-assembled block copolymer templates. Nanoscale, 2015, 7, 5826-5834.	2.8	21
210	Tuning substructure and properties of supported asymmetric triblock terpolymer membranes. Polymer, 2016, 107, 398-405.	1.8	21
211	Controlling Selfâ€Assembly in Gyroid Terpolymer Films By Solvent Vapor Annealing. Small, 2018, 14, e1802401.	5.2	21
212	Molecular Engineering of Ultrasmall Silica Nanoparticle–Drug Conjugates as Lung Cancer Therapeutics. Clinical Cancer Research, 2020, 26, 5424-5437.	3.2	21
213	Ultrasmall, Bright, and Photostable Fluorescent Core–Shell Aluminosilicate Nanoparticles for Liveâ€Cell Optical Superâ€Resolution Microscopy. Advanced Materials, 2021, 33, e2006829.	11.1	21
214	Water-Based Synthesis of Ultrasmall PEGylated Gold–Silica Core–Shell Nanoparticles with Long-Term Stability. Chemistry of Materials, 2014, 26, 5201-5207.	3.2	20
215	Twoâ€Dimensional Superstructures of Silica Cages. Advanced Materials, 2020, 32, e1908362.	11.1	20
216	Energy Transfer Study of the Interface Thickness in Symmetrical Isoprenea [^] Methyl Methacrylate Diblock Copolymers. Macromolecules, 2003, 36, 4485-4491.	2.2	19

#	Article	IF	Citations
217	Low temperature crystallisation of mesoporous TiO2. Nanoscale, 2013, 5, 10518.	2.8	19
218	Earthworm inspired locomotive motion from fast swelling hybrid hydrogels. Journal of Polymer Science Part A, 2009, 47, 5027-5033.	2.5	18
219	Block Copolymer Directed Nanostructured Surfaces as Templates for Confined Surface Reactions. Macromolecules, 2017, 50, 542-549.	2.2	18
220	Early Formation Pathways of Surfactant Micelle Directed Ultrasmall Silica Ring and Cage Structures. Journal of the American Chemical Society, 2018, 140, 17343-17348.	6.6	18
221	Preparation of Macroscopic Blockâ€Copolymerâ€Based Gyroidal Mesoscale Single Crystals by Solvent Evaporation. Advanced Materials, 2019, 31, e1902565.	11.1	18
222	Quantitative Measure of the Size Dispersity in Ultrasmall Fluorescent Organic–Inorganic Hybrid Core–Shell Silica Nanoparticles by Small-Angle X-ray Scattering. Chemistry of Materials, 2019, 31, 643-657.	3.2	18
223	Materials Combining Asymmetric Pore Structures with Well-Defined Mesoporosity for Energy Storage and Conversion. ACS Nano, 2020, 14, 16897-16906.	7.3	18
224	Porous cage-derived nanomaterial inks for direct and internal three-dimensional printing. Nature Communications, 2020, 11 , 4695.	5.8	18
225	Effect of humidity on surface structure and permeation of triblock terpolymer derived SNIPS membranes. Polymer, 2017, 126, 368-375.	1.8	17
226	High-Performance Chromatographic Characterization of Surface Chemical Heterogeneities of Fluorescent Organic–Inorganic Hybrid Core–Shell Silica Nanoparticles. ACS Nano, 2019, 13, 1795-1804.	7.3	17
227	Fluorescent Silica Nanoparticles with Well-Separated Intensity Distributions from Batch Reactions. Nano Letters, 2018, 18, 1305-1310.	4.5	16
228	Efficient Endocytosis of Inorganic Nanoparticles with Zwitterionic Surface Functionalization. ACS Applied Materials & Samp; Interfaces, 2019, 11, 38475-38482.	4.0	16
229	Block Copolymer Self-Assembly-Directed and Transient Laser Heating-Enabled Nanostructures toward Phononic and Photonic Quantum Materials. ACS Nano, 2020, 14, 11273-11282.	7.3	16
230	Poly(styrene-block-isoprene) nanocomposites: Kinetics of intercalation and effects of copolymer on intercalation behaviors. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 3264-3271.	2.4	15
231	Nanoparticle-Induced Packing Transition in Mesostructured Block Dendronâ^Silica Hybrids. Chemistry of Materials, 2007, 19, 3611-3614.	3.2	15
232	Influence of crystalline peripheral chain length on the solidâ€state assemblies of amphiphilic dendrons. Journal of Polymer Science Part A, 2007, 45, 4988-4994.	2.5	15
233	Colloidal Self-Assembly-Directed Laser-Induced Non-Close-Packed Crystalline Silicon Nanostructures. ACS Nano, 2011, 5, 7960-7966.	7.3	15
234	Synthesis and Formation Mechanism of All-Organic Block Copolymer-Directed Templating of Laser-Induced Crystalline Silicon Nanostructures. ACS Applied Materials & Samp; Interfaces, 2018, 10, 42777-42785.	4.0	15

#	Article	IF	Citations
235	Amorphous Quantum Nanomaterials. Advanced Materials, 2019, 31, 1806993.	11.1	15
236	Solid-state13C-NMR on oriented films of liquid-crystalline polymers. Advanced Materials, 1990, 2, 484-487.	11.1	14
237	Micellization of Model Macromolecular Surfactants as Studied by Static Light Scattering. Journal of Physical Chemistry B, 2000, 104, 5049-5052.	1.2	14
238	Biocatalytic Stimuliâ€Responsive Asymmetric Triblock Terpolymer Membranes for Localized Permeability Gating. Macromolecular Rapid Communications, 2017, 38, 1700364.	2.0	14
239	Fluorescent Silica Nanoparticles to Label Metastatic Tumor Cells in Mineralized Bone Microenvironments. Small, 2021, 17, e2001432.	5.2	14
240	Surface Segregation and Selfâ€Assembly of Blockâ€Copolymer Separation Layers on Top of Homopolymer Substructures in Asymmetric Ultrafiltration Membranes from a Single Casting Step. Advanced Functional Materials, 2021, 31, 2009387.	7.8	14
241	A novel approach to polymer-template mesoporous molecular sieves. Studies in Surface Science and Catalysis, 2000, 129, 1-6.	1.5	13
242	Semiconductor Dendritic‣inear Block Copolymers by Nitroxide Mediated Radical Polymerization. Macromolecular Rapid Communications, 2009, 30, 1243-1248.	2.0	13
243	Ordered mesoporous crystalline aluminas from self-assembly of ABC triblock terpolymer–butanol–alumina sols. RSC Advances, 2015, 5, 49287-49294.	1.7	13
244	A high transmission wave-guide wire network made by self-assembly. Nanoscale, 2015, 7, 1032-1036.	2.8	13
245	A Genomic Profile of Local Immunity in the Melanoma Microenvironment Following Treatment with $\hat{l}\pm$ Particle-Emitting Ultrasmall Silica Nanoparticles. Cancer Biotherapy and Radiopharmaceuticals, 2020, 35, 459-473.	0.7	13
246	Electrostatics in the self-assembly of macromolecular surfactants. Europhysics Letters, 1997, 40, 521-526.	0.7	12
247	Site-Specific Labeling of Surface Proteins on Living Cells Using Genetically Encoded Peptides that Bind Fluorescent Nanoparticle Probes. Bioconjugate Chemistry, 2009, 20, 1482-1489.	1.8	12
248	Towards mesoporous Keggin-type polyoxometalates – systematic study on organic template removal. Journal of Materials Chemistry A, 2013, 1, 6238.	5.2	12
249	Formation of Periodically-Ordered Calcium Phosphate Nanostructures by Block Copolymer-Directed Self-Assembly. Chemistry of Materials, 2016, 28, 838-847.	3.2	12
250	Discovering Synthesis Routes to Hexagonally Ordered Mesoporous Niobium Nitrides Using Poloxamer/Pluronics Block Copolymers. Chemistry of Materials, 2017, 29, 8973-8977.	3.2	12
251	Visualization of immobilization in shear bands by NMR imaging. Advanced Materials, 1996, 8, 481-484.	11.1	11
252	Structurally Asymmetric Porous Carbon Materials with Ordered Top Surface Layers from Nonequilibrium Block Copolymer Self-Assembly. Macromolecules, 2021, 54, 2979-2991.	2.2	11

#	Article	IF	CITATIONS
253	Ultrasmall Nanoparticle Delivery of Doxorubicin Improves Therapeutic Index for High-Grade Glioma. Clinical Cancer Research, 2022, 28, 2938-2952.	3.2	11
254	lonic and Zwitterionic Model Macromolecular Surfactants. Journal of Physical Chemistry B, 1998, 102, 7316-7318.	1.2	10
255	Design and Applications of Multiscale Organic–Inorganic Hybrid Materials Derived from Block Copolymer Self-Assembly. Advances in Polymer Science, 2013, , 259-293.	0.4	10
256	Tuning Mechanical Properties of Block Copolymer/Aluminosilicate Hybrid Materials. Macromolecular Rapid Communications, 2007, 28, 572-578.	2.0	9
257	Quantitative Comparison of Dye and Ultrasmall Fluorescent Silica Core–Shell Nanoparticle Probes for Optical Super-Resolution Imaging of Model Block Copolymer Thin Film Surfaces. ACS Macro Letters, 2019, 8, 1378-1382.	2.3	9
258	A rheometry method to assess the evaporationâ€induced mechanical strength development of polymer solutions used for membrane applications. Journal of Applied Polymer Science, 2019, 136, 47038.	1.3	9
259	Carbonâ€Assisted Stable Silver Nanostructures. Advanced Materials Interfaces, 2020, 7, 2001227.	1.9	9
260	Superconducting Quantum Metamaterials from Convergence of Soft and Hard Condensed Matter Science. Advanced Materials, 2021, 33, e2006975.	11.1	9
261	Addressing Particle Compositional Heterogeneities in Superâ€Resolutionâ€Enhanced Liveâ€Cell Ratiometric pH Sensing with Ultrasmall Fluorescent Core–Shell Aluminosilicate Nanoparticles. Advanced Functional Materials, 2021, 31, 2106144.	7.8	9
262	Asymmetric Membranes from Two Chemically Distinct Triblock Terpolymers Blended during Standard Membrane Fabrication. Macromolecular Rapid Communications, 2016, 37, 1689-1693.	2.0	8
263	Diffusion of rigid nanoparticles in crowded polymer-network hydrogels: dominance of segmental density over crosslinking density. Colloid and Polymer Science, 2017, 295, 1371-1381.	1.0	8
264	Inner and Outer Surface Functionalizations of Ultrasmall Fluorescent Silica Nanorings As Shown by High-Performance Liquid Chromatography. Chemistry of Materials, 2019, 31, 5519-5528.	3.2	8
265	Molecular Engineering of Surface Functional Groups Enabling Clinical Translation of Nanoparticle–Drug Conjugates. Chemistry of Materials, 2022, 34, 5344-5355.	3.2	8
266	Highly fluorescent sub 40-nm aminated mesoporous silica nanoparticles. Journal of Sol-Gel Science and Technology, 2015, 74, 32-38.	1.1	7
267	Controlling Surface Chemical Heterogeneities of Ultrasmall Fluorescent Core–Shell Silica Nanoparticles as Revealed by High-Performance Liquid Chromatography. Journal of Physical Chemistry C, 2019, 123, 23246-23254.	1.5	7
268	Structural Evolution of Ternary Amphiphilic Block Copolymer Solvent Systems for Phase Inversion Membrane Formation. Macromolecules, 2020, 53, 4889-4900.	2.2	7
269	Superconducting Quantum Metamaterials from High Pressure Melt Infiltration of Metals into Block Copolymer Double Gyroid Derived Ceramic Templates. Advanced Functional Materials, 2021, 31, 2100469.	7.8	7
270	Rapid Identification of Synthetic Routes to Functional Metastable Phases Using X-ray Probed Laser Anneal Mapping (XPLAM) Time–Temperature Quench Maps. Chemistry of Materials, 2021, 33, 4328-4336.	3.2	7

#	Article	IF	CITATIONS
271	Generalized Routes to Mesostructured Silicates with High Metal Content. Zeitschrift Fur Physikalische Chemie, 2012, 226, 1219-1228.	1.4	6
272	Nanopatterning of Crystalline Transition Metal Oxides by Surface Templated Nucleation on Block Copolymer Mesostructures. Crystal Growth and Design, 2017, 17, 5775-5782.	1.4	6
273	Nanoscale <i>Q</i> -Resolved Phonon Dynamics in Block Copolymers. ACS Applied Nano Materials, 2018, 1, 4918-4926.	2.4	6
274	Bimodal Morphology Transition Pathway in the Synthesis of Ultrasmall Fluorescent Mesoporous Silica Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 9582-9589.	1.5	6
275	Morphology and Local Dynamics in a Series of Aromatic Terpolyesters. Macromolecules, 1994, 27, 3632-3641.	2.2	5
276	Title is missing!. Acta Polymerica, 1996, 47, 429-435.	1.4	5
277	Probe diffusion in homogeneous diblock copolymers. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 1739-1746.	2.4	5
278	Investigation of Mechanical Deformation in Rigid Polymers by 2D Solid-State NMR Imaging. Macromolecules, 1998, 31, 8585-8589.	2.2	5
279	Characterizing Sulfur in TEM and STEM, with Applications to Lithium Sulfur Batteries. Microscopy and Microanalysis, 2014, 20, 446-447.	0.2	5
280	Dielectric discontinuity in equilibrium block copolymer micelles. Soft Matter, 2015, 11, 7081-7085.	1.2	5
281	Controlling the coassembly of highly amphiphilic block copolymers with a hydrolytic sol by solvent exchange. RSC Advances, 2015, 5, 22499-22502.	1.7	4
282	Expanding analytical tools for characterizing ultrasmall silica-based nanoparticles. RSC Advances, 2017, 7, 16861-16865.	1.7	4
283	Patternable Mesoporous Thin Film Quantum Materials via Block Copolymer Self-Assembly: An Emergent Technology?. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34732-34741.	4.0	4
284	Molecular dynamics in polystyrene from electron spin resonance (ESR) measurements: comparison between spinprobes and -labels attached to the chain ends. Macromolecular Chemistry and Physics, 1996, 197, 1121-1134.	1.1	3
285	Ordered nanostructured ceramic–metal composites through multifunctional block copolymer-metal nanoparticle self-assembly. Journal of Sol-Gel Science and Technology, 2014, 70, 286-291.	1.1	3
286	Orthogonal Nanoprobes Enabling Two-Color Optical Super-Resolution Microscopy Imaging of the Two Domains of Diblock Copolymer Thin Film Nanocomposites. Chemistry of Materials, 2021, 33, 5156-5167.	3.2	3
287	Iron and nitrogen-doped double gyroid mesoporous carbons for oxygen reduction in acidic environments. JPhys Energy, 2021, 3, 015001.	2.3	3
288	Amorphous Quantum Nanomaterials: Amorphous Quantum Nanomaterials (Adv. Mater. 5/2019). Advanced Materials, 2019, 31, 1970034.	11.1	2

#	Article	IF	CITATIONS
289	One-Pot Structure Direction of Large-Pore Co-Continuous Carbon Monoliths from Ultralarge Linear Diblock Copolymers. Chemistry of Materials, 2021, 33, 7731-7742.	3.2	2
290	Inside Front Cover: Designed Fabrication of Silica-Based Nanostructured Particle Systems for Nanomedicine Applications (Adv. Funct. Mater. 23/2008). Advanced Functional Materials, 2008, 18, NA-NA.	7.8	1
291	Capturing the Structure of Mesoporous Silica Nanoparticles in Solution With Cryo-TEM. Microscopy and Microanalysis, 2014, 20, 442-443.	0.2	1
292	Energy Filtering Transmission Electron Microscopy of Polymers and Hybrid Materials. Microscopy and Microanalysis, 1999, 5, 628-629.	0.2	0
293	Characterization of Medium-range Order in Self-Assembled Organic-inorganic Hybrid by Fluctuation X-ray Microscopy. Materials Research Society Symposia Proceedings, 2006, 960, 1.	0.1	0
294	"Nothing―can be better: Study of porosity in the charge trap layer of Flash memory. , 2009, , .		0
295	Macromol. Rapid Commun. 14/2009. Macromolecular Rapid Communications, 2009, 30, .	2.0	0
296	Direct Access to Ordered Porous Molybdenum Oxycarbide/Carbon Nanocomposites. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 1558-1558.	0.6	0
297	Cryo-STEM Reveals Humidity-Controlled Shape Change in Silica Nanoparticles. Microscopy and Microanalysis, 2015, 21, 1827-1828.	0.2	0
298	Understanding Initial Formation Stages of Nanomaterials Using Cryo-TEM. Microscopy and Microanalysis, 2016, 22, 1844-1845.	0.2	0
299	Linear and Circular Dichroism in Gyroid Optical Metamaterials. , 2018, , .		0
300	Lu-177 radiolabeled ultrasmall C' dot nanoparticle melanoma theranostics. Nuclear Medicine and Biology, 2019, 72-73, S60.	0.3	0
301	Superconducting Quantum Metamaterials: Superconducting Quantum Metamaterials from High Pressure Melt Infiltration of Metals into Block Copolymer Double Gyroid Derived Ceramic Templates (Adv. Funct. Mater. 23/2021). Advanced Functional Materials, 2021, 31, 2170166.	7.8	0
302	Mesoporous Superconductors: Superconducting Quantum Metamaterials from Convergence of Soft and Hard Condensed Matter Science (Adv. Mater. 26/2021). Advanced Materials, 2021, 33, 2170203.	11.1	0
303	Understanding the Influence of Porosity on Product Selectivity for Copper CO2 Reduction Electrocatalysts. ECS Meeting Abstracts, 2019, , .	0.0	0