
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9255800/publications.pdf Version: 2024-02-01

MELLIN LIN

#	Article	IF	CITATIONS
1	A serological survey of severe acute respiratory syndrome coronavirus 2 in dogs in Wuhan. Transboundary and Emerging Diseases, 2022, 69, 591-597.	3.0	29
2	Interleukin-17A Contributed to the Damage of Blood-CNS Barriers During Streptococcus suis Meningitis. Molecular Neurobiology, 2022, 59, 2116-2128.	4.0	4
3	Genome-wide CRISPR-Cas9 screening identifies the CYTH2 host gene as a potential therapeutic target of influenza viral infection. Cell Reports, 2022, 38, 110559.	6.4	10
4	SARS-CoV-2 Infection Causes Hyperglycemia in Cats. Journal of Infectious Diseases, 2022, 226, 1568-1576.	4.0	4
5	The C-Terminal Repeat Units of SpaA Mediate Adhesion of Erysipelothrix rhusiopathiae to Host Cells and Regulate Its Virulence. Biology, 2022, 11, 1010.	2.8	1
6	Interaction of Nuclear Export Protein with G Protein Pathway Suppressor 2 (GPS2) Facilitates Influenza A Virus Replication by Weakening the Inhibition of GPS2 to RNA Synthesis and Ribonucleoprotein Assembly. Journal of Virology, 2021, 95, .	3.4	5
7	Synthesis of polystyrene-based fluorescent quantum dots nanolabel and its performance in H5N1 virus and SARS-CoV-2 antibody sensing. Talanta, 2021, 225, 122064.	5.5	24
8	Acquiring high expression of suilysin enable non-epidemic <i>Streptococccus suis</i> to cause streptococcal toxic shock-like syndrome (STSLS) through NLRP3 inflammasome hyperactivation. Emerging Microbes and Infections, 2021, 10, 1309-1319.	6.5	7
9	SARS-CoV-2 Rapidly Adapts in Aged BALB/c Mice and Induces Typical Pneumonia. Journal of Virology, 2021, 95, .	3.4	43
10	Q493K and Q498H substitutions in Spike promote adaptation of SARS-CoV-2 in mice. EBioMedicine, 2021, 67, 103381.	6.1	102
11	SARS-CoV-2 promote autophagy to suppress type I interferon response. Signal Transduction and Targeted Therapy, 2021, 6, 180.	17.1	49
12	Progression and Trends in Virus from Influenza A to COVID-19: An Overview of Recent Studies. Viruses, 2021, 13, 1145.	3.3	12
13	Interleukin-17A Contributes to Bacterial Clearance in a Mouse Model of Streptococcal Toxic Shock-Like Syndrome. Pathogens, 2021, 10, 766.	2.8	3
14	3-Indoleacetonitrile Is Highly Effective in Treating Influenza A Virus Infection In Vitro and In Vivo. Viruses, 2021, 13, 1433.	3.3	9
15	In vivo structure and dynamics of the SARS-CoV-2 RNA genome. Nature Communications, 2021, 12, 5695.	12.8	27
16	PGRMC1 Exerts Its Function of Anti-Influenza Virus in the Central Nervous System. Microbiology Spectrum, 2021, 9, e0073421.	3.0	2
17	HP0487 contributes to the virulence of Streptococcus suis serotype 2 by mediating bacterial adhesion and anti-phagocytosis to neutrophils. Veterinary Microbiology, 2021, 260, 109164.	1.9	6
18	Development of a chemiluminescence immunoassay to accurately detect African swine fever virus antibodies in serum. Journal of Virological Methods, 2021, 298, 114269.	2.1	6

#	Article	IF	CITATIONS
19	Influenza A virus protein PB1-F2 impairs innate immunity by inducing mitophagy. Autophagy, 2021, 17, 496-511.	9.1	88
20	Comparative Genome Analysis of Streptococcus suis Serotype 9 Isolates from China, The Netherland, and the U.K Life, 2021, 11, 1324.	2.4	2
21	Development of a Dual ELISA for the Detection of CD2v-Unexpressed Lower-Virulence Mutational ASFV. Life, 2021, 11, 1214.	2.4	18
22	139D in NS1 Contributes to the Virulence of H5N6 Influenza Virus in Mice. Frontiers in Veterinary Science, 2021, 8, 808234.	2.2	1
23	Characterization of Erysipelothrix rhusiopathiae Isolates from Diseased Pigs in 15 Chinese Provinces from 2012 to 2018. Microorganisms, 2021, 9, 2615.	3.6	5
24	Human microRNAâ€30 inhibits influenza virus infection by suppressing the expression of SOCS1, SOCS3, and NEDD4. Cellular Microbiology, 2020, 22, e13150.	2.1	25
25	Eukaryotic Translation Elongation Factor 1 Delta Inhibits the Nuclear Import of the Nucleoprotein and PA-PB1 Heterodimer of Influenza A Virus. Journal of Virology, 2020, 95, .	3.4	19
26	14-Deoxy-11,12-didehydroandrographolide inhibits apoptosis in influenza A(H5N1) virus-infected human lung epithelial cells via the caspase-9-dependent intrinsic apoptotic pathway which contributes to its antiviral activity. Antiviral Research, 2020, 181, 104885.	4.1	17
27	Avian Chaperonin Containing TCP1 Subunit 5 Supports Influenza A Virus Replication by Interacting With Viral Nucleoprotein, PB1, and PB2 Proteins. Frontiers in Microbiology, 2020, 11, 538355.	3.5	8
28	A serological survey of SARS-CoV-2 in cat in Wuhan. Emerging Microbes and Infections, 2020, 9, 2013-2019.	6.5	240
29	hnRNPH2 as an Inhibitor of Chicken MDA5-Mediated Type I Interferon Response: Analysis Using Chicken MDA5–Host Interactome. Frontiers in Immunology, 2020, 11, 541267.	4.8	5
30	Screening of Virulence-Related Transcriptional Regulators in Streptococcus suis. Genes, 2020, 11, 972.	2.4	4
31	Transcriptome Profiles of Highly Pathogenic Pure Avian H7N9 Virus-Infected Lungs of BALB/c Mice. Frontiers in Veterinary Science, 2020, 7, 603584.	2.2	1
32	Long-Term Existence of SARS-CoV-2 in COVID-19 Patients: Host Immunity, Viral Virulence, and Transmissibility. Virologica Sinica, 2020, 35, 793-802.	3.0	24
33	Rapid and visual detection of African swine fever virus antibody by using fluorescent immunochromatography test strip. Talanta, 2020, 219, 121284.	5.5	20
34	Transcriptomic Analysis of the Chicken MDA5 Response Genes. Genes, 2020, 11, 308.	2.4	17
35	Human TRA2A determines influenza A virus host adaptation by regulating viral mRNA splicing. Science Advances, 2020, 6, eaaz5764.	10.3	15
36	Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibodies in Pets in Wuhan, China. Journal of Infection, 2020, 81, e68-e69.	3.3	35

#	Article	IF	CITATIONS
37	A novel gold nanoparticles decorated magnetic microbead-based molecular beacon for DNA multiplexing detection by flow cytometry. Analytica Chimica Acta, 2020, 1110, 19-25.	5.4	12
38	Influenza infection elicits an expansion of gut population of endogenous Bifidobacterium animalis which protects mice against infection. Genome Biology, 2020, 21, 99.	8.8	73
39	Akkermansia muciniphila Improves Host Defense Against Influenza Virus Infection. Frontiers in Microbiology, 2020, 11, 586476.	3.5	30
40	LYAR Suppresses Beta Interferon Induction by Targeting Phosphorylated Interferon Regulatory Factor 3. Journal of Virology, 2019, 93, .	3.4	15
41	Intranasal Vaccination With Multiple Virulence Factors Promotes Mucosal Clearance of Streptococcus suis Across Serotypes and Protects Against Meningitis in Mice. Journal of Infectious Diseases, 2019, 220, 1679-1687.	4.0	10
42	HP1717 Contributes to Streptococcus suis Virulence by Inducing an Excessive Inflammatory Response and Influencing the Biosynthesis of the Capsule. Microorganisms, 2019, 7, 522.	3.6	1
43	Regulation of influenza virus infection by microRNAs. Journal of Integrative Agriculture, 2019, 18, 1421-1427.	3.5	5
44	The prokaryotic Argonaute proteins enhance homology sequence-directed recombination in bacteria. Nucleic Acids Research, 2019, 47, 3568-3579.	14.5	42
45	Protection of chickens against fowl cholera by supernatant proteins of Pasteurella multocida cultured in an iron-restricted medium. Avian Pathology, 2019, 48, 221-229.	2.0	6
46	An NLRP3 inflammasome-triggered cytokine storm contributes to Streptococcal toxic shock-like syndrome (STSLS). PLoS Pathogens, 2019, 15, e1007795.	4.7	92
47	Characterization of protective antigen CbpB as an adhesin and a plasminogen-binding protein of Erysipelothrix rhusiopathiae. Research in Veterinary Science, 2019, 124, 352-356.	1.9	3
48	Evidence for a novel mechanism of influenza A virus host adaptation modulated by <scp>PB</scp> 2â€627. FEBS Journal, 2019, 286, 3389-3400.	4.7	10
49	A Novel Reassortant Avian H7N6 Influenza Virus Is Transmissible in Guinea Pigs via Respiratory Droplets. Frontiers in Microbiology, 2019, 10, 18.	3.5	14
50	Influenza M2 protein regulates MAVS-mediated signaling pathway through interacting with MAVS and increasing ROS production. Autophagy, 2019, 15, 1163-1181.	9.1	75
51	The Downregulation of MicroRNA hsa-miR-340-5p in IAV-Infected A549 Cells Suppresses Viral Replication by Targeting RIG-I and OAS2. Molecular Therapy - Nucleic Acids, 2019, 14, 509-519.	5.1	31
52	Baculovirus-expressed FAdV-4 penton base protein protects chicken against hepatitis-hydropericardium syndrome. Journal of Integrative Agriculture, 2019, 18, 2598-2604.	3.5	4
53	Autophagy Promotes Replication of Influenza A Virus <i>In Vitro</i> . Journal of Virology, 2019, 93, .	3.4	82
54	Ultrasensitive detection of avian influenza A (H7N9) virus using surface-enhanced Raman scattering-based lateral flow immunoassay strips. Analytica Chimica Acta, 2019, 1053, 139-147.	5.4	74

#	Article	IF	CITATIONS
55	Multifunctional Two-Dimensional Core–Shell MXene@Gold Nanocomposites for Enhanced Photo–Radio Combined Therapy in the Second Biological Window. ACS Nano, 2019, 13, 284-294.	14.6	232
56	Characterization of pathogenic roles of two Erysipelothrix rhusiopathiae surface proteins. Microbial Pathogenesis, 2018, 114, 166-168.	2.9	9
57	Insights into leghorn male hepatocellular cells response to fowl adenovirus serotype 4 infection by transcriptome analysis. Veterinary Microbiology, 2018, 214, 65-74.	1.9	19
58	Duck interferon regulatory factor 1 acts as a positive regulator in duck innate antiviral response. Developmental and Comparative Immunology, 2018, 78, 1-13.	2.3	16
59	Proteomic analysis of chicken embryo fibroblast cells infected with recombinant H5N1 avian influenza viruses with and without NS1 elF4GI binding domain. Oncotarget, 2018, 9, 8350-8367.	1.8	5
60	Evaluation of the protective efficacy of four newly identified surface proteins of Erysipelothrix rhusiopathiae. Vaccine, 2018, 36, 8079-8083.	3.8	19
61	The Nucleolar Protein LYAR Facilitates Ribonucleoprotein Assembly of Influenza A Virus. Journal of Virology, 2018, 92, .	3.4	21
62	Negative Regulation of Interferon-β Production by Alternative Splicing of Tumor Necrosis Factor Receptor-Associated Factor 3 in Ducks. Frontiers in Immunology, 2018, 9, 409.	4.8	5
63	Reassortant H5N1 Avian Influenza Virus Bearing PB2 Gene From a 2009 Pandemic H1N1 Exhibits Increased Pathogenicity in Mice. Frontiers in Microbiology, 2018, 9, 631.	3.5	3
64	Streptococcus suis 2 Transcriptional Regulator TstS Stimulates Cytokine Production and Bacteremia to Promote Streptococcal Toxic Shock-Like Syndrome. Frontiers in Microbiology, 2018, 9, 1309.	3.5	5
65	iTRAQ-based quantitative proteomic analysis reveals potential virulence factors of Erysipelothrix rhusiopathiae. Journal of Proteomics, 2017, 160, 28-37.	2.4	11
66	Continual Antigenic Diversification in China Leads to Global Antigenic Complexity of Avian Influenza H5N1 Viruses. Scientific Reports, 2017, 7, 43566.	3.3	21
67	Proteome Response of Chicken Embryo Fibroblast Cells to Recombinant H5N1 Avian Influenza Viruses with Different Neuraminidase Stalk Lengths. Scientific Reports, 2017, 7, 40698.	3.3	14
68	Construction of a highly efficient CRISPR/Cas9-mediated duck enteritis virus-based vaccine against H5N1 avian influenza virus and duck Tembusu virus infection. Scientific Reports, 2017, 7, 1478.	3.3	46
69	Development of a duplex PCR for rapid detection and differentiation of Erysipelothrix rhusiopathiae vaccine strains and wild type strains. Veterinary Microbiology, 2017, 199, 108-110.	1.9	8
70	Proteome analysis of Duck Tembusu virus (DTMUV)â€infected BHKâ€21 cells. Proteomics, 2017, 17, 1700033.	2.2	16
71	Erysipelothrix rhusiopathiae recruits host plasminogen via the major protective antigen SpaA. FEMS Microbiology Letters, 2017, 364, .	1.8	19
72	Glyceraldehyde-3-phosphate dehydrogenase acts as an adhesin in Erysipelothrix rhusiopathiae adhesion to porcine endothelial cells and as a receptor in recruitment of host fibronectin and plasminogen. Veterinary Research, 2017, 48, 16.	3.0	32

#	Article	IF	CITATIONS
73	Characterization of roles of SpaA in Erysipelothrix rhusiopathiae adhesion to porcine endothelial cells. Microbial Pathogenesis, 2017, 113, 176-180.	2.9	22
74	Crystal structure of an orthomyxovirus matrix protein reveals mechanisms for self-polymerization and membrane association. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8550-8555.	7.1	20
75	Subcellular localization and interactions of Infectious Salmon Anemia Virus (ISAV) M1 and NEP as well as host Hsc70. Virology Journal, 2017, 14, 30.	3.4	2
76	HP1330 Contributes to Streptococcus suis Virulence by Inducing Toll-Like Receptor 2- and ERK1/2-Dependent Pro-inflammatory Responses and Influencing In Vivo S. suis Loads. Frontiers in Immunology, 2017, 8, 869.	4.8	23
77	HIST1H1C Regulates Interferon-β and Inhibits Influenza Virus Replication by Interacting with IRF3. Frontiers in Immunology, 2017, 8, 350.	4.8	10
78	The C-Terminal Effector Domain of Non-Structural Protein 1 of Influenza A Virus Blocks IFN-β Production by Targeting TNF Receptor-Associated Factor 3. Frontiers in Immunology, 2017, 8, 779.	4.8	27
79	Identification of Extracellular Actin As a Ligand for Triggering Receptor Expressed on Myeloid Cells-1 Signaling. Frontiers in Immunology, 2017, 8, 917.	4.8	32
80	Influenza A Virus PA Antagonizes Interferon-β by Interacting with Interferon Regulatory Factor 3. Frontiers in Immunology, 2017, 8, 1051.	4.8	22
81	Sus scrofa miR-204 and miR-4331 Negatively Regulate Swine H1N1/2009 Influenza A Virus Replication by Targeting Viral HA and NS, Respectively. International Journal of Molecular Sciences, 2017, 18, 749.	4.1	17
82	Transcription analysis of the responses of porcine heart to Erysipelothrix rhusiopathiae. PLoS ONE, 2017, 12, e0185548.	2.5	5
83	The Influenza Virus H5N1 Infection Can Induce ROS Production for Viral Replication and Host Cell Death in A549 Cells Modulated by Human Cu/Zn Superoxide Dismutase (SOD1) Overexpression. Viruses, 2016, 8, 13.	3.3	69
84	Live Attenuated Vaccine Based on Duck Enteritis Virus against Duck Hepatitis A Virus Types 1 and 3. Frontiers in Microbiology, 2016, 7, 1613.	3.5	19
85	Molecular cloning and functional analysis of duck ubiquitin-specific protease 18 (USP18) gene. Developmental and Comparative Immunology, 2016, 62, 39-47.	2.3	11
86	Evaluation and improvement of a single nucleotide polymorphism–based PCR assay for rapid differentiation of live attenuated vaccine strains from field isolates of <i>Erysipelothrix rhusiopathiae</i> . Journal of Veterinary Diagnostic Investigation, 2016, 28, 714-717.	1.1	7
87	Molecular cloning and functional analysis of the duck TIR domain-containing adaptor inducing IFN-β (TRIF) gene. Developmental and Comparative Immunology, 2016, 65, 369-376.	2.3	6
88	14-Deoxy-11,12-didehydroandrographolide attenuates excessive inflammatory responses and protects mice lethally challenged with highly pathogenic A(H5N1) influenza viruses. Antiviral Research, 2016, 133, 95-105.	4.1	28
89	Characterisation of a novel integrative and conjugative element ICESsD9 carrying erm(B) and tet(O) resistance determinants in Streptococcus suis, and the distribution of ICESsD9-like elements in clinical isolates. Journal of Global Antimicrobial Resistance, 2016, 7, 13-18.	2.2	17
90	Characterization of Spectinomycin Resistance in Streptococcus suis Leads to Two Novel Insights into Drug Resistance Formation and Dissemination Mechanism. Antimicrobial Agents and Chemotherapy, 2016, 60, 6390-6392.	3.2	28

#	Article	IF	CITATIONS
91	Characterization of IgA1 protease as a surface protective antigen of Streptococcus suis serotype 2. Microbes and Infection, 2016, 18, 285-289.	1.9	13
92	Identification and genetic analysis of H3N8 subtype influenza viruses isolated from domestic pigeons in Central China. Virus Genes, 2016, 52, 38-50.	1.6	1
93	The Role of Porcine Monocyte Derived Dendritic Cells (MoDC) in the Inflammation Storm Caused by Streptococcus suis Serotype 2 Infection. PLoS ONE, 2016, 11, e0151256.	2.5	4
94	Identification of cellular microRNA-136 as a dual regulator of RIG-I-mediated innate immunity that antagonizes H5N1 IAV replication in A549 cells. Scientific Reports, 2015, 5, 14991.	3.3	61
95	Targeting TREM-1 Signaling in the Presence of Antibiotics is Effective Against Streptococcal Toxic-Shock-Like Syndrome (STSLS) Caused by Streptococcus suis. Frontiers in Cellular and Infection Microbiology, 2015, 5, 79.	3.9	28
96	Investigation of Pathogenesis of H1N1 Influenza Virus and Swine Streptococcus suis Serotype 2 Co-Infection in Pigs by Microarray Analysis. PLoS ONE, 2015, 10, e0124086.	2.5	30
97	Streptococcus suis serotype 2 strains can induce the formation of neutrophil extracellular traps and evade trapping. FEMS Microbiology Letters, 2015, 362, .	1.8	30
98	A novel pro-inflammatory protein of Streptococcus suis 2 induces the Toll-like receptor 2-dependent expression of pro-inflammatory cytokines in RAW 264.7 macrophages via activation of ERK1/2 pathway. Frontiers in Microbiology, 2015, 6, 178.	3.5	25
99	Insights into Human Astrocyte Response to H5N1 Infection by Microarray Analysis. Viruses, 2015, 7, 2618-2640.	3.3	30
100	TREM-1 Signaling Promotes Host Defense during the Early Stage of Infection with Highly Pathogenic Streptococcus suis. Infection and Immunity, 2015, 83, 3293-3301.	2.2	32
101	Efficient strategy for constructing duck enteritis virus-based live attenuated vaccine against homologous and heterologous H5N1 avian influenza virus and duck enteritis virus infection. Veterinary Research, 2015, 46, 42.	3.0	22
102	CHD3 facilitates vRNP nuclear export by interacting with NES1 of influenza A virus NS2. Cellular and Molecular Life Sciences, 2015, 72, 971-982.	5.4	20
103	14-Deoxy-11,12-dehydroandrographolide exerts anti-influenza A virus activity and inhibits replication of H5N1 virus by restraining nuclear export of viral ribonucleoprotein complexes. Antiviral Research, 2015, 118, 82-92.	4.1	48
104	Identification and characterisation a surface-associated arginine peptidase in Streptococcus suis serotype 2. Microbiological Research, 2015, 170, 168-176.	5.3	11
105	Porcine interferon-induced protein with tetratricopeptide repeats 3, polFIT3, inhibits swine influenza virus replication and potentiates IFN-Î ² production. Developmental and Comparative Immunology, 2015, 50, 49-57.	2.3	9
106	HSPD1 Interacts with IRF3 to Facilitate Interferon-Beta Induction. PLoS ONE, 2014, 9, e114874.	2.5	14
107	Efficient Strategy to Generate a Vectored Duck Enteritis Virus Delivering Envelope of Duck Tembusu Virus. Viruses, 2014, 6, 2428-2443.	3.3	23
108	Development of latex agglutination test with nucleoprotein as antigen for detection of antibodies to swine influenza virus. International Immunopharmacology, 2014, 19, 201-205.	3.8	3

#	Article	IF	CITATIONS
109	PB2-588I Enhances 2009 H1N1 Pandemic Influenza Virus Virulence by Increasing Viral Replication and Exacerbating PB2 Inhibition of Beta Interferon Expression. Journal of Virology, 2014, 88, 2260-2267.	3.4	39
110	The 2009 pandemic (H1N1) viruses isolated from pigs show enhanced pathogenicity in mice. Veterinary Research, 2013, 44, 41.	3.0	5
111	Glycoprotein C plays a role in the adsorption of duck enteritis virus to chicken embryo fibroblasts cells and in infectivity. Virus Research, 2013, 174, 1-7.	2.2	8
112	Characterization of Streptococcus suis serotype 2 isolates from China. Veterinary Microbiology, 2013, 166, 527-534.	1.9	24
113	Molecular characterisation of resistance to fluoroquinolones in Haemophilus parasuis isolated from China. International Journal of Antimicrobial Agents, 2013, 42, 87-89.	2.5	13
114	A Chromatographic Strip for Rapid Semi-quantitative Detection of H5 Subtype Avian Influenza Viruses in Poultry. Food Analytical Methods, 2013, 6, 1712-1717.	2.6	3
115	Fluoroquinolone-Resistant Haemophilus parasuis Isolates Exhibit More Putative Virulence Factors than Their Susceptible Counterparts. Journal of Clinical Microbiology, 2013, 51, 3130-3131.	3.9	4
116	Molecular Mechanism by Which Surface Antigen HP0197 Mediates Host Cell Attachment in the Pathogenic Bacteria Streptococcus suis. Journal of Biological Chemistry, 2013, 288, 956-963.	3.4	14
117	A fast and sensitive immunoassay of avian influenza virus based on label-free quantum dot probe and lateral flow test strip. Talanta, 2012, 100, 1-6.	5.5	101
118	Analysis of cellular proteome alterations in porcine alveolar macrophage cells infected with 2009 (H1N1) and classical swine H1N1 influenza viruses. Journal of Proteomics, 2012, 75, 1732-1741.	2.4	14
119	Identification of Human Host Proteins Contributing to H5N1 Influenza Virus Propagation by Membrane Proteomics. Journal of Proteome Research, 2012, 11, 5396-5405.	3.7	29
120	Haemophilus parasuis Encodes Two Functional Cytolethal Distending Toxins: CdtC Contains an Atypical Cholesterol Recognition/Interaction Region. PLoS ONE, 2012, 7, e32580.	2.5	26
121	HP0197 Contributes to CPS Synthesis and the Virulence of Streptococcus suis via CcpA. PLoS ONE, 2012, 7, e50987.	2.5	41
122	Large-Scale Identification of Bacteria–Host Crosstalk by Affinity Chromatography: Capturing the Interactions of <i>Streptococcus suis</i> Proteins with Host Cells. Journal of Proteome Research, 2011, 10, 5163-5174.	3.7	26
123	Pandemic (H1N1) 2009 Virus in Swine Herds, China. Emerging Infectious Diseases, 2011, 17, 1757-1759.	4.3	18
124	Comparative Genomics Study of Multi-Drug-Resistance Mechanisms in the Antibiotic-Resistant Streptococcus suis R61 Strain. PLoS ONE, 2011, 6, e24988.	2.5	36
125	Effects of the C-Terminal Truncation in NS1 Protein of the 2009 Pandemic H1N1 Influenza Virus on Host Gene Expression. PLoS ONE, 2011, 6, e26175.	2.5	17
126	IgA1 protease contributes to the virulence of Streptococcus suis. Veterinary Microbiology, 2011, 148, 436-439.	1.9	37

#	Article	IF	CITATIONS
127	Emergence of novel reassortant H3N2 influenza viruses among ducks in China. Archives of Virology, 2011, 156, 1045-1048.	2.1	11
128	Comparative genomic analysis of Streptococcus suis reveals significant genomic diversity among different serotypes. BMC Genomics, 2011, 12, 523.	2.8	71
129	Complete Genome Sequence of Streptococcus suis Serotype 14 Strain JS14. Journal of Bacteriology, 2011, 193, 2375-2376.	2.2	30
130	Response of swine spleen to Streptococcus suis infection revealed by transcription analysis. BMC Genomics, 2010, 11, 556.	2.8	36
131	Identification and characterization of IgA1 protease from Streptococcus suis. Veterinary Microbiology, 2010, 140, 171-175.	1.9	31
132	Quantumâ€dotsâ€based fluoroimmunoassay for the rapid and sensitive detection of avian influenza virus subtype H5N1. Luminescence, 2010, 25, 419-423.	2.9	68
133	Evaluation of the protective efficacy of a newly identified immunogenic protein, HP0272, of Streptococcus suis. FEMS Microbiology Letters, 2010, 307, 12-18.	1.8	28
134	Effect on Virulence and Pathogenicity of H5N1 Influenza A Virus through Truncations of NS1 eIF4GI Binding Domain. Journal of Infectious Diseases, 2010, 202, 1338-1346.	4.0	34
135	Proteomics Analysis of Differential Expression of Chicken Brain Tissue Proteins in Response to the Neurovirulent H5N1 Avian Influenza Virus Infection. Journal of Proteome Research, 2010, 9, 3789-3798.	3.7	34
136	Identification of a cell wall-associated subtilisin-like serine protease involved in the pathogenesis of Streptococcus suis serotype 2. Microbial Pathogenesis, 2010, 48, 103-109.	2.9	35
137	Immunoproteomic analysis of outer membrane proteins and extracellular proteins of Actinobacillus pleuropneumoniae JL03 serotype 3. BMC Microbiology, 2009, 9, 172.	3.3	32
138	An indirect sandwich ELISA for the detection of avian influenza H5 subtype viruses using anti-hemagglutinin protein monoclonal antibody. Veterinary Microbiology, 2009, 137, 24-30.	1.9	31
139	Characterization of Streptococcus suis isolates from the diseased pigs in China between 2003 and 2007. Veterinary Microbiology, 2009, 137, 196-201.	1.9	90
140	Isolation and molecular characterization of equine H3N8 influenza viruses from pigs in China. Archives of Virology, 2009, 154, 887-890.	2.1	98
141	Genetic characterization of an H5N1 avian influenza virus with neurovirulence in ducks. Virus Genes, 2009, 38, 263-268.	1.6	14
142	Characterization of the genes encoding complete US10, SORF3, and US2 proteins from duck enteritis virus. Virus Genes, 2009, 38, 295-301.	1.6	14
143	A comprehensive proteome map of the <i>Haemophilus parasuis</i> serovar 5. Proteomics, 2009, 9, 2722-2739.	2.2	21
144	Identification of three novel <i>in vivo</i> -induced expressed antigens during infection with <i>Streptococcus suis</i> serotype 2. FEMS Microbiology Letters, 2009, 295, 17-22.	1.8	14

#	Article	IF	CITATIONS
145	Identification and characterization of a novel protective antigen, Enolase of Streptococcus suis serotype 2. Vaccine, 2009, 27, 1348-1353.	3.8	86
146	Identification and characterization of novel immunogenic outer membrane proteins of Haemophilus parasuis serovar 5. Vaccine, 2009, 27, 5271-5277.	3.8	66
147	Evolutionary characterization of influenza virus A/duck/Hubei/W1/2004 (H9N2) isolated from central China. Virus Genes, 2008, 36, 79-83.	1.6	14
148	Construction and immune response characterization of a recombinant pseudorabies virus co-expressing capsid precursor protein (P1) and a multiepitope peptide of foot-and-mouth disease virus in swine. Virus Genes, 2008, 36, 393-400.	1.6	12
149	Identification of immunogenic cell wallâ€essociated proteins of <i>Streptococcus suis</i> serotype 2. Proteomics, 2008, 8, 3506-3515.	2.2	104
150	Cloning, expression and characterization of a cell wall surface protein, 6-phosphogluconate-dehydrogenase, of Streptococcus suis serotype 2. Veterinary Microbiology, 2008, 130, 363-370.	1.9	29
151	Different neutralization efficiency of neutralizing monoclonal antibodies against avian influenza H5N1 virus to virus strains from different hosts. Molecular Immunology, 2007, 44, 1052-1055.	2.2	18
152	Effective small interfering RNAs targeting matrix and nucleocapsid protein gene inhibit influenza A virus replication in cells and mice. Antiviral Research, 2007, 76, 186-193.	4.1	79
153	Generation and immunogenicity of a recombinant pseudorabies virus expressing cap protein of porcine circovirus type 2. Veterinary Microbiology, 2007, 119, 97-104.	1.9	41
154	Genome-sequenee Analysis of the Pathogenic H5N1 Avian Influenza A Virus Isolated in China in 2004. Virus Genes, 2006, 32, 85-95.	1.6	33
155	Development and Evaluation of a DAS-ELISA for Rapid Detection of Avian Influenza Viruses. Avian Diseases, 2006, 50, 325-330.	1.0	36
156	Serological characterization of isolates from China. Veterinary Microbiology, 2005, 111, 231-236.	1.9	141
157	Latex Agglutination Test for Monitoring Antibodies to Avian Influenza Virus Subtype H5N1. Journal of Clinical Microbiology, 2005, 43, 1953-1955.	3.9	24
158	Development of Enzyme-Linked Immunosorbent Assay with Nucleoprotein as Antigen for Detection of Antibodies to Avian Influenza Virus. Avian Diseases, 2004, 48, 870-878.	1.0	36
159	An approach to a FMD vaccine based on genetic engineered attenuated pseudorabies virus: one experiment using VP1 gene alone generates an antibody responds on FMD and pseudorabies in swine. Vaccine, 2004, 22, 2129-2136.	3.8	35