Feng Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/925577/publications.pdf Version: 2024-02-01

FENC CHENC

#	Article	IF	CITATIONS
1	Bio-crude oil production and valorization of hydrochar as anode material from hydrothermal liquefaction of algae grown on brackish dairy wastewater. Fuel Processing Technology, 2022, 227, 107119.	7.2	11
2	Accuracy of predictions made by machine learned models for biocrude yields obtained from hydrothermal liquefaction of organic wastes. Chemical Engineering Journal, 2022, 442, 136013.	12.7	24
3	Best practices for bio-crude oil production at pilot scale using continuous flow reactors. , 2022, , 1061-1119.		1
4	Exploring spent biomass-derived adsorbents as anodes for lithium ion batteries. Materials Today Energy, 2021, 19, 100580.	4.7	10
5	A Poriferous Nanoflake-Assembled Flower-Like Ni ₅ P ₄ Anode for High-Performance Sodium-Ion Batteries. Energy Material Advances, 2021, 2021, .	11.0	6
6	Metal oxide supported Ni-impregnated bifunctional catalysts for controlling char formation and maximizing energy recovery during catalytic hydrothermal liquefaction of food waste. Sustainable Energy and Fuels, 2021, 5, 941-955.	4.9	23
7	Waste-to-wealth application of wastewater treatment algae-derived hydrochar for Pb(II) adsorption. MethodsX, 2021, 8, 101263.	1.6	9
8	Ash-pretreatment and hydrothermal liquefaction of filamentous algae grown on dairy wastewater. Algal Research, 2021, 57, 102282.	4.6	13
9	Integrated Extraction and Catalytic Upgrading of Biocrude Oil from Co-hydrothermal Liquefaction of Crude Glycerol and Algae. Energy & Fuels, 2021, 35, 12165-12174.	5.1	6
10	Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion. Renewable and Sustainable Energy Reviews, 2021, 146, 111167.	16.4	41
11	Recovery of Nitrogen from Low-Cost Plant Feedstocks Used for Bioenergy: A Review of Availability and Process Order. Energy & Fuels, 2021, 35, 14361-14381.	5.1	1
12	Recovery of struvite from hydrothermally processed algal biomass cultivated in urban wastewaters. Resources, Conservation and Recycling, 2020, 163, 105089.	10.8	31
13	Co-hydrothermal liquefaction of wastewater-grown algae and crude glycerol: A novel strategy of bio-crude oil-aqueous separation and techno-economic analysis for bio-crude oil recovery and upgrading. Algal Research, 2020, 51, 102077.	4.6	20
14	Systematic Study of Al Impurity for NCM622 Cathode Materials. ACS Sustainable Chemistry and Engineering, 2020, 8, 9875-9884.	6.7	53
15	Impact of feedstock composition on pyrolysis of low-cost, protein- and lignin-rich biomass: A review. Journal of Analytical and Applied Pyrolysis, 2020, 147, 104780.	5.5	93
16	Characterization of resin extracted from guayule (Parthenium argentatum): A dataset including GC–MS and FT-ICR MS. Data in Brief, 2020, 31, 105989.	1.0	10
17	Synergistic Effects of Inexpensive Mixed Metal Oxides for Catalytic Hydrothermal Liquefaction of Food Wastes. ACS Sustainable Chemistry and Engineering, 2020, 8, 6877-6886.	6.7	39
18	Characterization and evaluation of guayule processing residues as potential feedstock for biofuel and chemical production. Industrial Crops and Products, 2020, 150, 112311.	5.2	34

Feng Cheng

#	Article	IF	CITATIONS
19	Roles of Co-solvents in hydrothermal liquefaction of low-lipid, high-protein algae. Bioresource Technology, 2020, 310, 123454.	9.6	38
20	Hydrothermal liquefaction of Galdieria sulphuraria grown on municipal wastewater. Bioresource Technology, 2019, 292, 121884.	9.6	55
21	Bio-crude oil from hydrothermal liquefaction of wastewater microalgae in a pilot-scale continuous flow reactor. Bioresource Technology, 2019, 294, 122184.	9.6	49
22	<i>Co-Products and Biofuels from Guar and Guayule Processing Residues</i> . , 2019, , .		2
23	<i>Roles of Co-solvents in Hydrothermal Liquefaction of Protein-Rich Algae</i> . , 2019, , .		1
24	<i>Hydrothermal Liquefaction of Food Waste: Bio-crude oil Characterization, Mass and Energy Balance</i> . , 2019, , .		4
25	Modification of a pilot-scale continuous flow reactor for hydrothermal liquefaction of wet biomass. MethodsX, 2019, 6, 2793-2806.	1.6	10
26	Hydrothermal liquefaction of high- and low-lipid algae: Mass and energy balances. Bioresource Technology, 2018, 258, 158-167.	9.6	81
27	Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes. Renewable and Sustainable Energy Reviews, 2017, 72, 673-722.	16.4	168
28	Hydrothermal liquefaction of high- and low-lipid algae: Bio-crude oil chemistry. Applied Energy, 2017, 206, 278-292.	10.1	101