## Abdel El Kharbachi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9255680/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Structural and Electrochemical Insights from the Fluorination of Disordered Mn-Based Rock Salt<br>Cathode Materials. Chemistry of Materials, 2022, 34, 2268-2281.                                                                | 3.2 | 13        |
| 2  | Design of a milling reactor coupled to a high-temperature mass spectrometer for<br>thermodynamic/kinetic data of hydrogen-based materials. International Journal of Hydrogen Energy,<br>2021, 46, 3464-3474.                     | 3.8 | 0         |
| 3  | Towards Better Stability and Reversibility of Mn2+/Mn4+ Double Redox Activity in Disordered Rocksalt<br>Oxyfluoride Cathode Materials. ECS Meeting Abstracts, 2021, MA2021-01, 251-251.                                          | 0.0 | Ο         |
| 4  | Toward Better Stability and Reversibility of the Mn <sup>4+</sup> /Mn <sup>2+</sup> Double Redox<br>Activity in Disordered Rocksalt Oxyfluoride Cathode Materials. Chemistry of Materials, 2021, 33,<br>8235-8247.               | 3.2 | 18        |
| 5  | First-principles study of <i>closo</i> -dodecaborates M <sub>2</sub> B <sub>12</sub> H <sub>12</sub><br>(M = Li, Na, K) as solid-state electrolyte materials. Physical Chemistry Chemical Physics, 2021, 23,<br>27014-27023.     | 1.3 | 5         |
| 6  | Exploits, advances and challenges benefiting beyond Li-ion battery technologies. Journal of Alloys and<br>Compounds, 2020, 817, 153261.                                                                                          | 2.8 | 144       |
| 7  | Metal (boro-) hydrides for high energy density storage and relevant emerging technologies.<br>International Journal of Hydrogen Energy, 2020, 45, 33687-33730.                                                                   | 3.8 | 53        |
| 8  | Pseudo-ternary LiBH <sub>4</sub> ·LiCl·P <sub>2</sub> S <sub>5</sub> system as structurally disordered<br>bulk electrolyte for all-solid-state lithium batteries. Physical Chemistry Chemical Physics, 2020, 22,<br>13872-13879. | 1.3 | 23        |
| 9  | Metal Hydrides and Related Materials. Energy Carriers for Novel Hydrogen and Electrochemical Storage. Journal of Physical Chemistry C, 2020, 124, 7599-7607.                                                                     | 1.5 | 52        |
| 10 | Full-cell hydride-based solid-state Li batteries for energy storage. International Journal of Hydrogen<br>Energy, 2019, 44, 7875-7887.                                                                                           | 3.8 | 46        |
| 11 | Borohydride-based Solid-state Electrolytes for Lithium Batteries. , 2019, , .                                                                                                                                                    |     | 1         |
| 12 | Reversibility of metal-hydride anodes in all-solid-state lithium secondary battery operating at room temperature. Solid State Ionics, 2018, 317, 263-267.                                                                        | 1.3 | 21        |
| 13 | Understanding Capacity Fading of MgH <sub>2</sub> Conversion-Type Anodes via Structural<br>Morphology Changes and Electrochemical Impedance. Journal of Physical Chemistry C, 2018, 122,<br>8750-8759.                           | 1.5 | 12        |
| 14 | MgH <sub>2</sub> –CoO: a conversion-type composite electrode for LiBH <sub>4</sub> -based<br>all-solid-state lithium ion batteries. RSC Advances, 2018, 8, 23468-23474.                                                          | 1.7 | 24        |
| 15 | Lithium ionic conduction in composites of Li(BH4)0.7510.25 and amorphous 0.75Li2S·0.25P2S5 for battery applications. Electrochimica Acta, 2018, 278, 332-339.                                                                    | 2.6 | 35        |
| 16 | Morphology effects in MgH2 anode for lithium ion batteries. International Journal of Hydrogen<br>Energy, 2017, 42, 22551-22556.                                                                                                  | 3.8 | 18        |
| 17 | Mechanistic Properties of MgH2–Based Anode As Derived from Structural Morphology Changes<br>Versus Electrochemical Impedance in a Li-Ion Cell. ECS Meeting Abstracts, 2017, ,                                                    | 0.0 | 0         |
| 18 | Tracking Electrochemical Double Layer Effects Modulated By the Solvent Composition in Lithium Ion<br>Batteries: A Combined Theoretical and Experimental Investigation. ECS Meeting Abstracts, 2017, , .                          | 0.0 | 0         |

Abdel El Kharbachi

| #  | Article                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Metal Hydride–Oxide Paired Anode for All-Solid Li-Ion Batteries. ECS Meeting Abstracts, 2017, , .                                                                       | 0.0 | Ο         |
| 20 | Electrochemical Probe of the Acidity in Room Temperature Ionic Liquids Using Quinone/Hydroquinone<br>System. ECS Meeting Abstracts, 2017, , .                           | 0.0 | 0         |
| 21 | Recent progress in magnesium borohydride Mg(BH4)2: Fundamentals and applications for energy storage. International Journal of Hydrogen Energy, 2016, 41, 14387-14403.   | 3.8 | 122       |
| 22 | Tritium absorption and desorption in ITER relevant materials: comparative study of tungsten dust and massive samples. Journal of Nuclear Materials, 2015, 463, 885-888. | 1.3 | 32        |
| 23 | Tritium labeling of detonation nanodiamonds. Chemical Communications, 2014, 50, 2916-2918.                                                                              | 2.2 | 29        |
| 24 | Tritium absorption/desorption in ITER-like tungsten particles. International Journal of Hydrogen<br>Energy, 2014, 39, 10525-10536.                                      | 3.8 | 52        |
| 25 | A thermodynamic assessment of LiBH4. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2012, 39, 80-90.                                                 | 0.7 | 48        |
| 26 | Above room temperature heat capacity and phase transition of lithium tetrahydroborate.<br>Thermochimica Acta, 2011, 520, 75-79.                                         | 1.2 | 15        |