Karine Rp Breckpot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9255306/publications.pdf Version: 2024-02-01

KADINE PD RDECKDOT

#	Article	IF	CITATIONS
1	Consensus guidelines for the detection of immunogenic cell death. Oncolmmunology, 2014, 3, e955691.	2.1	686
2	Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. Frontiers in Immunology, 2015, 6, 588.	2.2	317
3	Combinatorial Strategies for the Induction of Immunogenic Cell Death. Frontiers in Immunology, 2015, 6, 187.	2.2	289
4	Nanobody-Based Targeting of the Macrophage Mannose Receptor for Effective <i>In Vivo</i> Imaging of Tumor-Associated Macrophages. Cancer Research, 2012, 72, 4165-4177.	0.4	263
5	Lentiviral Vectors in Gene Therapy: Their Current Status and Future Potential. Archivum Immunologiae Et Therapiae Experimentalis, 2010, 58, 107-119.	1.0	262
6	PDL1 Signals through Conserved Sequence Motifs to Overcome Interferon-Mediated Cytotoxicity. Cell Reports, 2017, 20, 1818-1829.	2.9	220
7	PD1 signal transduction pathways in T cells. Oncotarget, 2017, 8, 51936-51945.	0.8	191
8	Messenger RNA-Electroporated Dendritic Cells Presenting MAGE-A3 Simultaneously in HLA Class I and Class II Molecules. Journal of Immunology, 2004, 172, 6649-6657.	0.4	182
9	CD83 expression on dendritic cells and T cells: Correlation with effective immune responses. European Journal of Immunology, 2007, 37, 686-695.	1.6	173
10	Preclinical Evaluation of TriMix and Antigen mRNA-Based Antitumor Therapy. Cancer Research, 2012, 72, 1661-1671.	0.4	168
11	Lentivirally transduced dendritic cells as a tool for cancer immunotherapy. Journal of Gene Medicine, 2003, 5, 654-667.	1.4	157
12	Current approaches in dendritic cell generation and future implications for cancer immunotherapy. Cancer Immunology, Immunotherapy, 2007, 56, 1513-1537.	2.0	149
13	Role of non-classical MHC class I molecules in cancer immunosuppression. Oncolmmunology, 2013, 2, e26491.	2.1	131
14	HIV-1 Lentiviral Vector Immunogenicity Is Mediated by Toll-Like Receptor 3 (TLR3) and TLR7. Journal of Virology, 2010, 84, 5627-5636.	1.5	129
15	Turn Back the TIMe: Targeting Tumor Infiltrating Myeloid Cells to Revert Cancer Progression. Frontiers in Immunology, 2018, 9, 1977.	2.2	123
16	mRNA-based dendritic cell vaccines. Expert Review of Vaccines, 2015, 14, 161-176.	2.0	121
17	Generation of large numbers of dendritic cells in a closed system using Cell Factoriesâ,,¢. Journal of Immunological Methods, 2002, 264, 135-151.	0.6	104
18	Lentiviral vectors for cancer immunotherapy: transforming infectious particles into therapeutics. Gene Therapy, 2007, 14, 847-862.	2.3	104

#	Article	IF	CITATIONS
19	Induction of effective therapeutic antitumor immunity by direct in vivo administration of lentiviral vectors. Gene Therapy, 2006, 13, 630-640.	2.3	98
20	Co-delivery of nucleoside-modified mRNA and TLR agonists for cancer immunotherapy: Restoring the immunogenicity of immunosilent mRNA. Journal of Controlled Release, 2017, 266, 287-300.	4.8	98
21	Dendritic Cell Targeting mRNA Lipopolyplexes Combine Strong Antitumor T-Cell Immunity with Improved Inflammatory Safety. ACS Nano, 2018, 12, 9815-9829.	7.3	98
22	Gain of 20q11.21 in human embryonic stem cells improves cell survival by increased expression of Bcl-xL. Molecular Human Reproduction, 2014, 20, 168-177.	1.3	97
23	Immunogenicity Risk Profile of Nanobodies. Frontiers in Immunology, 2021, 12, 632687.	2.2	97
24	The potential of antigen and TriMix sonoporation using mRNA-loaded microbubbles for ultrasound-triggered cancer immunotherapy. Journal of Controlled Release, 2014, 194, 28-36.	4.8	95
25	Non-invasive assessment of murine PD-L1 levels in syngeneic tumor models by nuclear imaging with nanobody tracers. Oncotarget, 2017, 8, 41932-41946.	0.8	95
26	Intratumoral Delivery of TriMix mRNA Results in T-cell Activation by Cross-Presenting Dendritic Cells. Cancer Immunology Research, 2016, 4, 146-156.	1.6	90
27	The Next-Generation Immune Checkpoint LAG-3 and Its Therapeutic Potential in Oncology: Third Time's a Charm. International Journal of Molecular Sciences, 2021, 22, 75.	1.8	87
28	Electroporation of immature and mature dendritic cells: implications for dendritic cell-based vaccines. Gene Therapy, 2005, 12, 772-782.	2.3	85
29	Noninvasive imaging of the PD-1:PD-L1 immune checkpoint: Embracing nuclear medicine for the benefit of personalized immunotherapy. Theranostics, 2018, 8, 3559-3570.	4.6	85
30	Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of d-luciferin: effect on intensity, time kinetics and repeatability of photon emission. European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35, 999-1007.	3.3	84
31	Theranostics in immuno-oncology using nanobody derivatives. Theranostics, 2019, 9, 7772-7791.	4.6	83
32	Side-by-Side Comparison of Lentivirally Transduced and mRNA-Electroporated Dendritic Cells: Implications for Cancer Immunotherapy Protocols. Molecular Therapy, 2004, 10, 768-779.	3.7	78
33	Tissue-targeted therapy of autoimmune diabetes using dendritic cells transduced to express IL-4 in NOD mice. Clinical Immunology, 2008, 127, 176-187.	1.4	75
34	Particle-mediated Intravenous Delivery of Antigen mRNA Results in Strong Antigen-specific T-cell Responses Despite the Induction of Type I Interferon. Molecular Therapy - Nucleic Acids, 2016, 5, e326.	2.3	75
35	Optimized dendritic cell-based immunotherapy for melanoma: the TriMix-formula. Cancer Immunology, Immunotherapy, 2014, 63, 959-967.	2.0	74
36	Interference with PD-L1/PD-1 co-stimulation during antigen presentation enhances the multifunctionality of antigen-specific T cells. Gene Therapy, 2014, 21, 262-271.	2.3	73

#	Article	IF	CITATIONS
37	Primary deficiency of microsomal triglyceride transfer protein in human abetalipoproteinemia is associated with loss of CD1 function. Journal of Clinical Investigation, 2010, 120, 2889-2899.	3.9	71
38	Hitchhiking nanoparticles: Reversible coupling of lipid-based nanoparticles to cytotoxic T lymphocytes. Biomaterials, 2016, 77, 243-254.	5.7	68
39	Intratumoral administration of mRNA encoding a fusokine consisting of IFN-β and the ectodomain of the TGF-β receptor II potentiates antitumor immunity. Oncotarget, 2014, 5, 10100-10113.	0.8	66
40	The ReNAissanCe of mRNA-based cancer therapy. Expert Review of Vaccines, 2015, 14, 235-251.	2.0	65
41	Attenuated Expression of A20 Markedly Increases the Efficacy of Double-Stranded RNA-Activated Dendritic Cells As an Anti-Cancer Vaccine. Journal of Immunology, 2009, 182, 860-870.	0.4	64
42	Exploiting dendritic cells for cancer immunotherapy: genetic modification of dendritic cells. Journal of Gene Medicine, 2004, 6, 1175-1188.	1.4	63
43	A personalized view on cancer immunotherapy. Cancer Letters, 2014, 352, 113-125.	3.2	63
44	Cancer-Associated Myeloid Regulatory Cells. Frontiers in Immunology, 2016, 7, 113.	2.2	63
45	Selective ERK activation differentiates mouse and human tolerogenic dendritic cells, expands antigenâ€specific regulatory T cells, and suppresses experimental inflammatory arthritis. Arthritis and Rheumatism, 2011, 63, 84-95.	6.7	62
46	A highly efficient tumor-infiltrating MDSC differentiation system for discovery of anti-neoplastic targets, which circumvents the need for tumor establishment in mice. Oncotarget, 2014, 5, 7843-7857.	0.8	62
47	Dendritic Cells for Active Anti-Cancer Immunotherapy: Targeting Activation Pathways Through Genetic Modification. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2009, 9, 328-343.	0.6	61
48	Nanoparticle design to induce tumor immunity and challenge the suppressive tumor microenvironment. Nano Today, 2014, 9, 743-758.	6.2	60
49	<i>Ex vivo</i> generation of myeloid-derived suppressor cells that model the tumor immunosuppressive environment in colorectal cancer. Oncotarget, 2015, 6, 12369-12382.	0.8	59
50	Targeting the tumor microenvironment to enhance antitumor immune responses. Oncotarget, 2015, 6, 1359-1381.	0.8	59
51	Intralymphatic mRNA vaccine induces CD8 T-cell responses that inhibit the growth of mucosally located tumours. Scientific Reports, 2016, 6, 22509.	1.6	58
52	Expression of human GITRL on myeloid dendritic cells enhances their immunostimulatory function but does not abrogate the suppressive effect of CD4+CD25+ regulatory T cells. Journal of Leukocyte Biology, 2007, 82, 93-105.	1.5	57
53	Development of the Nanobody display technology to target lentiviral vectors to antigen-presenting cells. Gene Therapy, 2012, 19, 1133-1140.	2.3	55
54	Tumourâ€associated macrophageâ€mediated survival of myeloma cells through <scp>STAT3</scp> activation. Journal of Pathology, 2017, 241, 534-546.	2.1	50

#	Article	IF	CITATIONS
55	Evaluating a Single Domain Antibody Targeting Human PD-L1 as a Nuclear Imaging and Therapeutic Agent. Cancers, 2019, 11, 872.	1.7	50
56	mRNA. Human Vaccines and Immunotherapeutics, 2013, 9, 265-274.	1.4	49
57	Neo-Antigen mRNA Vaccines. Vaccines, 2020, 8, 776.	2.1	49
58	Activation of Immature Monocyte-Derived Dendritic Cells After Transduction with High Doses of Lentiviral Vectors. Human Gene Therapy, 2007, 18, 536-546.	1.4	47
59	Modulation of Regulatory T Cell Function by Monocyte-Derived Dendritic Cells Matured through Electroporation with mRNA Encoding CD40 Ligand, Constitutively Active TLR4, and CD70. Journal of Immunology, 2013, 191, 1976-1983.	0.4	47
60	mRNA in cancer immunotherapy: beyond a source of antigen. Molecular Cancer, 2021, 20, 48.	7.9	46
61	Modulating Co-Stimulation During Antigen Presentation to Enhance Cancer Immunotherapy. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2012, 12, 224-235.	0.5	45
62	Identification of New Antigenic Peptide Presented by HLA-Cw7 and Encoded by Several MAGE Genes Using Dendritic Cells Transduced with Lentiviruses. Journal of Immunology, 2004, 172, 2232-2237.	0.4	44
63	Broadening the Message: A Nanovaccine Co-loaded with Messenger RNA and α-GalCer Induces Antitumor Immunity through Conventional and Natural Killer T Cells. ACS Nano, 2019, 13, 1655-1669.	7.3	44
64	Noninvasive Imaging of the Immune Checkpoint LAG-3 Using Nanobodies, from Development to Pre-Clinical Use. Biomolecules, 2019, 9, 548.	1.8	43
65	Preclinical Targeted α- and βâ^'-Radionuclide Therapy in HER2-Positive Brain Metastasis Using Camelid Single-Domain Antibodies. Cancers, 2020, 12, 1017.	1.7	43
66	Anti-Human PD-L1 Nanobody for Immuno-PET Imaging: Validation of a Conjugation Strategy for Clinical Translation. Biomolecules, 2020, 10, 1388.	1.8	42
67	Lentiviral Vectors for Anti-Tumor Immunotherapy. Current Gene Therapy, 2008, 8, 438-448.	0.9	42
68	Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines. Journal of Immunology Research, 2015, 2015, 1-18.	0.9	40
69	Inhibition of Firefly Luciferase by General Anesthetics: Effect on In Vitro and In Vivo Bioluminescence Imaging. PLoS ONE, 2012, 7, e30061.	1.1	40
70	Human pancreatic duct cells can produce tumour necrosis factor-α that damages neighbouring beta cells and activates dendritic cells. Diabetologia, 2004, 47, 998-1008.	2.9	39
71	Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using <i>ex vivo</i> myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncolmmunology, 2014, 3, e945378.	2.1	37
72	Downregulation of Stat3 in melanoma: reprogramming the immune microenvironment as an anticancer therapeutic strategy. Gene Therapy, 2013, 20, 1085-1092.	2.3	36

#	Article	IF	CITATIONS
73	Design of an Optimized Wilms' Tumor 1 (WT1) mRNA Construct for Enhanced WT1 Expression and Improved Immunogenicity In Vitro and In Vivo. Molecular Therapy - Nucleic Acids, 2013, 2, e134.	2.3	36
74	Signal transducer and activator of transcription 3 in myeloid-derived suppressor cells: an opportunity for cancer therapy. Oncotarget, 0, 7, 42698-42715.	0.8	34
75	Proinflammatory Characteristics of SMAC/DIABLO-Induced Cell Death in Antitumor Therapy. Cancer Research, 2012, 72, 1342-1352.	0.4	32
76	Activation of Monocytes via the CD14 Receptor Leads to the Enhanced Lentiviral Transduction of Immature Dendritic Cells. Human Gene Therapy, 2004, 15, 562-573.	1.4	31
77	Targeting of Human Antigen-Presenting Cell Subsets. Journal of Virology, 2013, 87, 11304-11308.	1.5	31
78	Induction of antigen-specific CD8+ cytotoxic T cells by dendritic cells co-electroporated with a dsRNA analogue and tumor antigen mRNA. Gene Therapy, 2006, 13, 1027-1036.	2.3	30
79	Retroviral and Lentiviral Vectors for the Induction of Immunological Tolerance. Scientifica, 2012, 2012, 1-14.	0.6	30
80	Signaling Mechanisms that Balance Anti-viral, Auto-reactive, and Antitumor Potential of Low Affinity T Cells. Journal of Clinical & Cellular Immunology, 2013, 01, .	1.5	29
81	Dendritic cells differentiated in the presence of IFN-β and IL-3 are potent inducers of an antigen-specific CD8+T cell response. Journal of Leukocyte Biology, 2005, 78, 898-908.	1.5	27
82	Functional T-cell responses generated by dendritic cells expressing the early HIV-1 proteins Tat, Rev and Nef. Vaccine, 2008, 26, 3735-3741.	1.7	27
83	Assessing T-cell responses in anticancer immunotherapy. Oncolmmunology, 2013, 2, e26148.	2.1	27
84	Loss of RASSF4 Expression in Multiple Myeloma Promotes RAS-Driven Malignant Progression. Cancer Research, 2018, 78, 1155-1168.	0.4	27
85	Tâ€cell subsets in the skin and their role in inflammatory skin disorders. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 827-842.	2.7	27
86	Lentiviral Vectors: A Versatile Tool to Fight Cancer. Current Molecular Medicine, 2013, 13, 602-625.	0.6	27
87	Myeloid-derived suppressor cells reveal radioprotective properties through arginase-induced l-arginine depletion. Radiotherapy and Oncology, 2016, 119, 291-299.	0.3	26
88	Epigenetic treatment of multiple myeloma mediates tumor intrinsic and extrinsic immunomodulatory effects. Oncolmmunology, 2018, 7, e1484981.	2.1	26
89	Single-Domain Antibody Nuclear Imaging Allows Noninvasive Quantification of LAG-3 Expression by Tumor-Infiltrating Leukocytes and Predicts Response of Immune Checkpoint Blockade. Journal of Nuclear Medicine, 2021, 62, 1638-1644.	2.8	26
90	Immunogenicity of targeted lentivectors. Oncotarget, 2014, 5, 704-715.	0.8	25

#	Article	IF	CITATIONS
91	Preclinical Evaluation of Invariant Natural Killer T Cells in the 5T33 Multiple Myeloma Model. PLoS ONE, 2013, 8, e65075.	1.1	24
92	Selective Activation of Intracellular Signalling Pathways in Dendritic Cells for Cancer Immunotherapy. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 29-39.	0.9	23
93	Targeting Neuropilin-1 with Nanobodies Reduces Colorectal Carcinoma Development. Cancers, 2020, 12, 3582.	1.7	23
94	Phosphorylated STAT5 regulates p53 expression via BRCA1/BARD1-NPM1 and MDM2. Cell Death and Disease, 2016, 7, e2560-e2560.	2.7	22
95	Perforin and Granzyme B Expressed by Murine Myeloid-Derived Suppressor Cells: A Study on Their Role in Outgrowth of Cancer Cells. Cancers, 2019, 11, 808.	1.7	22
96	The antigenâ€binding moiety in the driver's seat of CARs. Medicinal Research Reviews, 2022, 42, 306-342.	5.0	21
97	Variegation and silencing in a lentiviral-based murine transgenic model. Transgenic Research, 2010, 19, 399-414.	1.3	20
98	Immune modulation by genetic modification of dendritic cells with lentiviral vectors. Virus Research, 2013, 176, 1-15.	1.1	20
99	The Journey of in vivo Virus Engineered Dendritic Cells From Bench to Bedside: A Bumpy Road. Frontiers in Immunology, 2018, 9, 2052.	2.2	18
100	Single Domain Antibody-Mediated Blockade of Programmed Death-Ligand 1 on Dendritic Cells Enhances CD8 T-cell Activation and Cytokine Production. Vaccines, 2019, 7, 85.	2.1	17
101	Single-domain antibody fusion proteins can target and shuttle functional proteins into macrophage mannose receptor expressing macrophages. Journal of Controlled Release, 2019, 299, 107-120.	4.8	17
102	A versatile T cell-based assay to assess therapeutic antigen-specific PD-1-targeted approaches. Oncotarget, 2018, 9, 27797-27808.	0.8	17
103	Fractionated Radiation Severely Reduces the Number of CD8+ T Cells and Mature Antigen Presenting Cells Within Lung Tumors. International Journal of Radiation Oncology Biology Physics, 2021, 111, 272-283.	0.4	16
104	mRNA: delivering an antitumor message?. Immunotherapy, 2011, 3, 605-607.	1.0	15
105	Site-Specific Radiolabeling of a Human PD-L1 Nanobody via Maleimide–Cysteine Chemistry. Pharmaceuticals, 2021, 14, 550.	1.7	15
106	The transduction pattern of ILâ€12â€encoding lentiviral vectors shapes the immunological outcome. European Journal of Immunology, 2015, 45, 3351-3361.	1.6	14
107	Targeting Lentiviral Vectors for Cancer Immunotherapy. Current Cancer Therapy Reviews, 2011, 7, 248-260.	0.2	13
108	Assessing Tumor-Infiltrating Lymphocytes in Breast Cancer: A Proposal for Combining Immunohistochemistry and Gene Expression Analysis to Refine Scoring. Frontiers in Immunology, 2022, 13, 794175.	2.2	13

7

#	Article	IF	CITATIONS
109	Choose your models wisely: How different murine bone marrow-derived dendritic cell protocols influence the success of nanoparticulate vaccines in vitro. Journal of Controlled Release, 2014, 195, 138-146.	4.8	12
110	Epigenetic Modifiers: Anti-Neoplastic Drugs With Immunomodulating Potential. Frontiers in Immunology, 2021, 12, 652160.	2.2	12
111	Antigen-presenting cell-targeted lentiviral vectors do not support the development of productive T-cell effector responses: implications for in vivo targeted vaccine delivery. Gene Therapy, 2017, 24, 370-375.	2.3	11
112	Formatting and gene-based delivery of a human PD-L1 single domain antibody for immune checkpoint blockade. Molecular Therapy - Methods and Clinical Development, 2021, 22, 172-182.	1.8	11
113	Intratumoral delivery of mRNA: Overcoming obstacles for effective immunotherapy. Oncolmmunology, 2015, 4, e1005504.	2.1	10
114	Oncolytic Herpes Simplex Virus Type 1 Induces Immunogenic Cell Death Resulting in Maturation of BDCA-1+ Myeloid Dendritic Cells. International Journal of Molecular Sciences, 2022, 23, 4865.	1.8	10
115	The role of SMAC mimetics in regulation of tumor cell death and immunity. Oncolmmunology, 2012, 1, 965-967.	2.1	9
116	Contribution of Cardiac Sodium Channel β-Subunit Variants to Brugada Syndrome. Circulation Journal, 2015, 79, 2118-2129.	0.7	9
117	Adult-Derived Human Liver Stem/Progenitor Cells Infused 3 Days Postsurgery Improve Liver Regeneration in a Mouse Model of Extended Hepatectomy. Cell Transplantation, 2017, 26, 351-364.	1.2	9
118	CS1-specific single-domain antibodies labeled with Actinium-225 prolong survival and increase CD8+ T cells and PD-L1 expression in Multiple Myeloma. OncoImmunology, 2021, 10, 2000699.	2.1	9
119	Emerging applications of nanobodies in cancer therapy. International Review of Cell and Molecular Biology, 2022, , 143-199.	1.6	9
120	Hepatocarcinoma Induces a Tumor Necrosis Factor-Dependent Kupffer Cell Death Pathway That Favors Its Proliferation Upon Partial Hepatectomy. Frontiers in Oncology, 2020, 10, 547013.	1.3	7
121	Overcoming the Challenges of High Quality RNA Extraction from Core Needle Biopsy. Biomolecules, 2021, 11, 621.	1.8	7
122	RNA in Cancer Immunotherapy: Unlocking the Potential of the Immune System. Clinical Cancer Research, 2022, 28, 3929-3939.	3.2	7
123	Phosphorylated STAT3 physically interacts with NPM and transcriptionally enhances its expression in cancer. Oncogene, 2015, 34, 1650-1657.	2.6	6
124	Adjuvant-Enhanced mRNA Vaccines. Methods in Molecular Biology, 2017, 1499, 179-191.	0.4	6
125	Towards a personalized iPSC-based vaccine. Nature Biomedical Engineering, 2018, 2, 277-278.	11.6	6
126	Commentary: Immunogenic Cell Death and Immunotherapy of Multiple Myeloma. Frontiers in Cell and Developmental Biology, 2019, 7, 149.	1.8	5

#	Article	IF	CITATIONS
127	Evaluation of single domain antibodies as nuclear tracers for imaging of the immune checkpoint receptor human lymphocyte activation gene-3 in cancer. EJNMMI Research, 2021, 11, 115.	1.1	5
128	Targeted Radionuclide Therapy with Low and High-Dose Lutetium-177–Labeled Single Domain Antibodies Induces Distinct Immune Signatures in a Mouse Melanoma Model. Molecular Cancer Therapeutics, 2022, 21, 1136-1148.	1.9	5
129	Manipulating Immune Regulatory Pathways to Enhance T Cell Stimulation. , 2014, , .		4
130	Unraveling the Effects of a Talimogene Laherparepvec (T-VEC)-Induced Tumor Oncolysate on Myeloid Dendritic Cells. Frontiers in Immunology, 2021, 12, 733506.	2.2	4
131	Targeted Lentiviral Vectors: Current Applications and Future Potential. , 0, , .		3
132	Inhibiting Histone and DNA Methylation Improves Cancer Vaccination in an Experimental Model of Melanoma. Frontiers in Immunology, 2022, 13, .	2.2	2
133	Lentiviruses in cancer immunotherapy. Future Virology, 2007, 2, 597-606.	0.9	1
134	RAS Association Domain Family Member 4 (RASSF4): A New Potent Tumor Suppressor in Multiple Myeloma. Blood, 2016, 128, 2057-2057.	0.6	1
135	Clinical Grade Lentiviral Vectors. SpringerBriefs in Biochemistry and Molecular Biology, 2012, , 69-85.	0.3	1
136	Abstract B136: Optimized messenger RNA immunolipoplexes for cancer immunotherapy: Balancing immunogenicity and adjuvancy. , 2019, , .		1
137	Lentiviral Vectors in Immunotherapy. , 0, , .		0
138	Immunomodulation by Genetic Modification Using Lentiviral Vectors. SpringerBriefs in Biochemistry and Molecular Biology, 2012, , 51-67.	0.3	0
139	Development of Retroviral and Lentiviral Vectors. SpringerBriefs in Biochemistry and Molecular Biology, 2012, , 11-28.	0.3	0
140	Cell and Tissue Gene Targeting with Lentiviral Vectors. SpringerBriefs in Biochemistry and Molecular Biology, 2012, , 29-50.	0.3	0
141	Signal Transducer and Activation of Transcription 3: A Master Regulator of Myeloid-Derived Suppressor Cells. SpringerBriefs in Immunology, 2016, , 73-90.	0.1	0
142	Abstract B151: Exploring the induction of immunogenic cell death (ICD) by high-intensity focused ultrasound (HIFU). , 2019, , .		0