
Yuming Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9255097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Artificial selection on GmOLEO1 contributes to the increase in seed oil during soybean domestication. PLoS Genetics, 2019, 15, e1008267.	3.5	75
2	A Genetic Relationship between Phosphorus Efficiency and Photosynthetic Traits in Soybean As Revealed by QTL Analysis Using a High-Density Genetic Map. Frontiers in Plant Science, 2016, 7, 924.	3.6	65
3	Genome-Wide Association Studies of Photosynthetic Traits Related to Phosphorus Efficiency in Soybean. Frontiers in Plant Science, 2018, 9, 1226.	3.6	56
4	The genetic architecture of water-soluble protein content and its genetic relationship to total protein content in soybean. Scientific Reports, 2017, 7, 5053.	3.3	31
5	Upâ€regulating <scp><i>GmETO1</i></scp> improves phosphorus uptake and use efficiency by promoting root growth in soybean. Plant, Cell and Environment, 2020, 43, 2080-2094.	5.7	31
6	GWAS reveals two novel loci for photosynthesis-related traits in soybean. Molecular Genetics and Genomics, 2020, 295, 705-716.	2.1	23
7	Use of single nucleotide polymorphisms and haplotypes to identify genomic regions associated with protein content and water-soluble protein content in soybean. Theoretical and Applied Genetics, 2014, 127, 1905-1915.	3.6	21
8	Genome-Wide Association Study Reveals Novel Loci for SC7 Resistance in a Soybean Mutant Panel. Frontiers in Plant Science, 2017, 8, 1771.	3.6	21
9	A genome-wide expression profile analysis reveals active genes and pathways coping with phosphate starvation in soybean. BMC Genomics, 2016, 17, 192.	2.8	20
10	Genome-wide association study for soybean mosaic virus SC3 resistance in soybean. Molecular Breeding, 2020, 40, 1.	2.1	13
11	Identification of loci and candidate gene GmSPX-RING1 responsible for phosphorus efficiency in soybean via genome-wide association analysis. BMC Genomics, 2020, 21, 725.	2.8	12
12	Novel target sites for soybean yield enhancement by photosynthesis. Journal of Plant Physiology, 2022, 268, 153580.	3.5	12
13	GmWRKY46, a WRKY transcription factor, negatively regulates phosphorus tolerance primarily through modifying root morphology in soybean. Plant Science, 2022, 315, 111148.	3.6	11
14	GWAS identifies two novel loci for photosynthetic traits related to phosphorus efficiency in soybean. Molecular Breeding, 2020, 40, 1.	2.1	10
15	Identification of soybean phosphorous efficiency QTLs and genes using chlorophyll fluorescence parameters through GWAS and RNA-seq. Planta, 2021, 254, 110.	3.2	8
16	Genome-wide analysis of long non-coding RNAs (IncRNAs) in two contrasting soybean genotypes subjected to phosphate starvation. BMC Genomics, 2021, 22, 433.	2.8	7
17	High-density QTL mapping of leaf-related traits and chlorophyll content in three soybean RIL populations. BMC Plant Biology, 2020, 20, 470.	3.6	6
18	Transcriptome profiling reveals the spatial-temporal dynamics of gene expression essential for soybean seed development. BMC Genomics, 2021, 22, 453.	2.8	5

#	Article	IF	CITATIONS
19	Genomeâ€wide association study of soybean (Glycine Max) phosphorus deficiency tolerance during the seedling stage. Plant Breeding, 2021, 140, 267-284.	1.9	1