
Andreas Schönhals

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9255095/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined FTIR and Dielectric Investigation of Poly(vinyl acetate) Adsorbed on Silica Particles. Macromolecules, 2013, 46, 4626-4632.	4.8	184
2	Tg depression and invariant segmental dynamics in polystyrene thin films. Soft Matter, 2012, 8, 5119.	2.7	173
3	Dielectric Study of Molecular Mobility in Poly(propylene-graft-maleic anhydride)/Clay Nanocomposites. Macromolecules, 2005, 38, 2764-2774.	4.8	111
4	Dielectric relaxation of ultrathin films of supported polysulfone. Physical Review E, 2009, 79, 011801.	2.1	91
5	Molecular Mobility and Glass Transition of Thin Films of Poly(bisphenol A carbonate). Macromolecules, 2012, 45, 1652-1662.	4.8	89
6	Dielectric Properties of Nanocomposites Based on Polyethylene and Layered Double Hydroxide. Macromolecules, 2009, 42, 4165-4174.	4.8	79
7	Comparison of thermal and dielectric spectroscopy for nanocomposites based on polypropylene and Layered Double Hydroxide – Proof of interfaces. European Polymer Journal, 2014, 55, 48-56.	5.4	69
8	First Clear-Cut Experimental Evidence of a Glass Transition in a Polymer with Intrinsic Microporosity: PIM-1. Journal of Physical Chemistry Letters, 2018, 9, 2003-2008.	4.6	67
9	Dynamics of Linear Poly(<i>N</i> -isopropylacrylamide) in Water around the Phase Transition Investigated by Dielectric Relaxation Spectroscopy. Journal of Physical Chemistry B, 2014, 118, 3750-3759.	2.6	66
10	Structure–property relationships of nanocomposites based on polylactide and MgAl layered double hydroxides. European Polymer Journal, 2015, 68, 338-354.	5.4	59
11	Structure of Plasmaâ€Deposited Poly(acrylic acid) Films. Plasma Processes and Polymers, 2011, 8, 147-159.	3.0	55
12	Crystallization behavior of nanocomposites based on poly(l-lactide) and MgAl layered double hydroxides – Unbiased determination of the rigid amorphous phases due to the crystals and the nanofiller. Polymer, 2017, 108, 257-264.	3.8	54
13	Structure and Phase Behavior of a Discotic Columnar Liquid Crystal Confined in Nanochannels. Journal of Physical Chemistry C, 2012, 116, 18990-18998.	3.1	45
14	Glass transition and segmental dynamics in thin supported polystyrene films: The role of molecular weight and annealing. Thermochimica Acta, 2013, 566, 186-192.	2.7	42
15	Quantized Self-Assembly of Discotic Rings in a Liquid Crystal Confined in Nanopores. Physical Review Letters, 2018, 120, 067801.	7.8	42
16	Vibrational density of states of triphenylene based discotic liquid crystals: dependence on the length of the alkyl chain. Physical Chemistry Chemical Physics, 2014, 16, 7324-7333.	2.8	39
17	Unveiling the Dynamics of Self-Assembled Layers of Thin Films of Poly(vinyl methyl ether) (PVME) by Nanosized Relaxation Spectroscopy. ACS Applied Materials & Interfaces, 2017, 9, 7535-7546.	8.0	38
18	Broadband dielectric spectroscopy on the molecular dynamics in different generations of hyperbranched polyester. Journal of Applied Polymer Science, 2009, 113, 2477-2484.	2.6	37

Andreas Schönhals

#	Article	IF	CITATIONS
19	The dielectric signature of poly(N-isopropylacrylamide) microgels at the volume phase transition: dependence on the crosslinking density. Soft Matter, 2013, 9, 4464.	2.7	36
20	Molecular Mobility of the High Performance Membrane Polymer PIM-1 as Investigated by Dielectric Spectroscopy. ACS Macro Letters, 2016, 5, 528-532.	4.8	35
21	Effect of Backbone Rigidity on the Glass Transition of Polymers of Intrinsic Microporosity Probed by Fast Scanning Calorimetry. ACS Macro Letters, 2019, 8, 1022-1028.	4.8	35
22	Calorimetric evidence for a mobile surface layer in ultrathin polymeric films: poly(2-vinyl pyridine). Soft Matter, 2015, 11, 7942-7952.	2.7	34
23	Thermotropic orientational order of discotic liquid crystals in nanochannels: an optical polarimetry study and a Landau–de Gennes analysis. Soft Matter, 2014, 10, 4522-4534.	2.7	33
24	Molecular Mobility and Physical Aging of a Highly Permeable Glassy Polynorbornene as Revealed by Dielectric Spectroscopy. ACS Macro Letters, 2017, 6, 813-818.	4.8	31
25	Dynamics and ionic conductivity of ionic liquid crystals forming a hexagonal columnar mesophase. Physical Chemistry Chemical Physics, 2018, 20, 5626-5635.	2.8	31
26	Probing the phase transition of aqueous solutions of linear low molecular weight poly(N-isopropylacrylamide) by dielectric spectroscopy. Soft Matter, 2012, 8, 12116.	2.7	30
27	Hyperbranched poly(amidoamine)/kaolinite nanocomposites: Structure and charge carrier dynamics. Polymer, 2017, 121, 64-74.	3.8	29
28	Inelastic neutron spectroscopy as a tool to investigate nanoconfined polymer systems. Polymer, 2016, 105, 393-406.	3.8	28
29	Molecular mobility and gas transport properties of nanocomposites based on PIM-1 and polyhedral oligomeric phenethyl-silsesquioxanes (POSS). Journal of Membrane Science, 2017, 529, 274-285.	8.2	28
30	Rotational Fluctuations of Water Confined to Layered Oxide Materials:  Nonmonotonous Temperature Dependence of Relaxation Times. Journal of Physical Chemistry A, 2007, 111, 5166-5175.	2.5	27
31	Competition of nanoparticle-induced mobilization and immobilization effects on segmental dynamics of an epoxy-based nanocomposite. Soft Matter, 2020, 16, 5406-5421.	2.7	27
32	Calorimetric glass transition of ultrathin poly(bisphenol A carbonate) films. Soft Matter, 2012, 8, 9132.	2.7	26
33	Structure–Property Relationships of Nanocomposites Based on Polylactide and Layered Double Hydroxides – Comparison of MgAl and NiAl LDH as Nanofiller. Macromolecular Chemistry and Physics, 2017, 218, 1700232.	2.2	26
34	Surface and Bulk Structure of Thin Spin Coated and Plasma-Polymerized Polystyrene Films. Plasma Chemistry and Plasma Processing, 2012, 32, 767-780.	2.4	25
35	Molecular dynamics of a discotic liquid crystal investigated by a combination of dielectric relaxation and specific heat spectroscopy. Soft Matter, 2012, 8, 11115.	2.7	24
36	Structure–Property Relationships of Hyperbranched Polymer/Kaolinite Nanocomposites. Macromolecules, 2015, 48, 6562-6573.	4.8	24

Andreas Schönhals

#	Article	IF	CITATIONS
37	Calorimetric glass transition of ultrathin poly(vinyl methyl ether) films. Polymer, 2013, 54, 2067-2070.	3.8	23
38	Dielectric investigations of nanocomposites based on Matrimid and polyhedral oligomeric phenethyl-silsesquioxanes (POSS). Polymer, 2016, 90, 89-101.	3.8	23
39	Self-assembly of liquid crystals in nanoporous solids for adaptive photonic metamaterials. Nanoscale, 2019, 11, 23304-23317.	5.6	23
40	Unambiguous Evidence for a Highly Mobile Surface Layer in Ultrathin Polymer Films by Specific Heat Spectroscopy on Blends. Macromolecules, 2015, 48, 4936-4941.	4.8	22
41	Influence of interfaces on the crystallization behavior and the rigid amorphous phase of poly(I-lactide)-based nanocomposites with different layered doubled hydroxides as nanofiller. Polymer, 2019, 184, 121929.	3.8	21
42	Phase Transitions and Molecular Mobility of a Discotic Liquid Crystal under Nanoscale Confinement. Journal of Physical Chemistry C, 2013, 117, 19712-19720.	3.1	20
43	Spatial inhomogeneity, interfaces and complex vitrification kinetics in a network forming nanocomposite. Soft Matter, 2021, 17, 2775-2790.	2.7	20
44	Collective orientational order and phase behavior of a discotic liquid crystal under nanoscale confinement. Nanoscale Advances, 2019, 1, 1104-1116.	4.6	19
45	Reaction of CO2Gas with (radicals in) Plasma-Polymerized Acrylic Acid (and Formation of COOH-Rich) Tj ETQq	1 1 0,78431 3.0	4 rgBT /Overl
46	Anomalies in the low frequency vibrational density of states for a polymer with intrinsic microporosity – the Boson peak of PIM-1. Physical Chemistry Chemical Physics, 2018, 20, 1355-1363.	2.8	17
47	Dielectric and flash DSC investigations on an epoxy based nanocomposite system with MgAl layered double hydroxide as nanofiller. Thermochimica Acta, 2019, 677, 151-161.	2.7	17
48	Molecular Dynamics of Janus Polynorbornenes: Glass Transitions and Nanophase Separation. Macromolecules, 2020, 53, 7410-7419.	4.8	17
49	Correlation of Activation Energies of Gas Diffusivity and Local Matrix Mobility in Polycarbonate/POSS Nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1593-1597.	2.1	15
50	Decoupling of Dynamic and Thermal Glass Transition in Thin Films of a PVME/PS Blend. ACS Macro Letters, 2017, 6, 1156-1161.	4.8	15
51	Cu nanoparticles constrain segmental dynamics of cross-linked polyethers: a trade-off between non-fouling and antibacterial properties. Soft Matter, 2019, 15, 2884-2896.	2.7	15
52	Influence of Trimethylsilyl Side Groups on the Molecular Mobility and Charge Transport in Highly Permeable Glassy Polynorbornenes. ACS Applied Polymer Materials, 2019, 1, 844-855.	4.4	15
53	Calorimetric and Dielectric Investigations of Epoxy-Based Nanocomposites with Halloysite Nanotubes as Nanofillers. Polymers, 2021, 13, 1634.	4.5	15
54	Unraveling the Dynamics of Nanoscopically Confined PVME in Thin Films of a Miscible PVME/PS Blend. ACS Applied Materials & Interfaces, 2017, 9, 37289-37299.	8.0	15

#	Article	IF	CITATIONS
55	Effect of Silver Nanoparticles on the Dielectric Properties and the Homogeneity of Plasma Poly(acrylic acid) Thin Films. Journal of Physical Chemistry C, 2020, 124, 22817-22826.	3.1	14
56	Multiple glassy dynamics in dipole functionalized triphenylene-based discotic liquid crystals revealed by broadband dielectric spectroscopy and advanced calorimetry – assessment of the molecular origin. Physical Chemistry Chemical Physics, 2019, 21, 18265-18277.	2.8	12
57	Molecular Dynamics of the Asymmetric Blend PVME/PS Revisited by Broadband Dielectric and Specific Heat Spectroscopy: Evidence of Multiple Glassy Dynamics. Macromolecules, 2019, 52, 1620-1631.	4.8	12
58	Plasma Polymerization of Acrylic Acid for the Tunable Synthesis of Glassy and Carboxylated Nanoparticles. Journal of Physical Chemistry B, 2020, 124, 668-678.	2.6	12
59	Dielectric analysis of the upper critical solution temperature behaviour of a poly(acrylamide-co-acrylonitrile) copolymer system in water. Soft Matter, 2017, 13, 2384-2393.	2.7	10
60	Unexpected behavior of ultra-thin films of blends of polystyrene/poly(vinyl methyl ether) studied by specific heat spectroscopy. Journal of Chemical Physics, 2017, 146, 203321.	3.0	10
61	Molecular Mobility of a Polymer of Intrinsic Microporosity Revealed by Quasielastic Neutron Scattering. Macromolecules, 2020, 53, 6731-6739.	4.8	10
62	Molecular dynamics and electrical conductivity of Guanidinium based ionic liquid crystals: Influence of cation headgroup configuration. Journal of Molecular Liquids, 2021, 330, 115666.	4.9	10
63	Confinement Effects on the Molecular Dynamics of Liquidâ€Crystalline Polymethacrylates—A Broadband Dielectric Spectroscopy Study. Macromolecular Chemistry and Physics, 2012, 213, 2420-2431.	2.2	9
64	Complex molecular dynamics of a symmetric model discotic liquid crystal revealed by broadband dielectric, thermal and neutron spectroscopy. Soft Matter, 2020, 16, 2005-2016.	2.7	9
65	Do Interfacial Layers in Thin Films Act as an Independent Layer within Thin Films?. Macromolecules, 2021, 54, 509-519.	4.8	9
66	High-resolution dielectric study reveals pore-size-dependent orientational order of a discotic liquid crystal confined in tubular nanopores. Physical Review E, 2015, 92, 012503.	2.1	8
67	Electrical Conductivity and Multiple Glassy Dynamics of Crown Ether-Based Columnar Liquid Crystals. Journal of Physical Chemistry B, 2020, 124, 8728-8739.	2.6	8
68	In Situ Nanocalorimetric Investigations of Plasma Assisted Deposited Poly(ethylene oxide)-like Films by Specific Heat Spectroscopy. Journal of Physical Chemistry B, 2016, 120, 3954-3962.	2.6	7
69	Nanoscale dipole dynamics of protein membranes studied by broadband dielectric microscopy. Nanoscale, 2019, 11, 4303-4309.	5.6	7
70	Low frequency vibrational density of state of highly permeable super glassy polynorbornenes – the Boson peak. Physical Chemistry Chemical Physics, 2020, 22, 18381-18387.	2.8	7
71	Thermal properties and vibrational density of states of a nanoconfined discotic liquid crystal. Colloid and Polymer Science, 2014, 292, 1949-1960.	2.1	6
72	Modified polyvinyl chloride membrane grafted with an ultra-thin polystyrene film: structure and electrochemical properties. Journal of Materials Research and Technology, 2021, 12, 2273-2284.	5.8	6

#	Article	IF	CITATIONS
73	Electrospun Nanocomposite Fibers of Polycarbonate- and Taurine-Modified Boehmite Nanoparticles: What Can Be Learned from Structural and Thermal Investigations?. ACS Applied Polymer Materials, 2021, 3, 6572-6585.	4.4	5
74	Side Chain Length-Dependent Dynamics and Conductivity in Self-Assembled Ion Channels. Journal of Physical Chemistry C, 2022, 126, 10995-11006.	3.1	4
75	Microscopic dynamics of highly permeable super glassy polynorbornenes revealed by quasielastic neutron scattering. Journal of Membrane Science, 2022, 642, 119972.	8.2	3
76	Structure of plasmaâ€deposited copolymer films prepared from acrylic acid and styrene: Part III sulfonation and electrochemical properties. Plasma Processes and Polymers, 2022, 19, .	3.0	3
77	Graphene Oxide/Polyvinyl Alcohol–Formaldehyde Composite Loaded by Pb Ions: Structure and Electrochemical Performance. Polymers, 2022, 14, 2303.	4.5	3
78	Quasi- and inelastic neutron scattering to investigate the molecular dynamics of discotic molecules in the bulk. EPJ Web of Conferences, 2015, 83, 02017.	0.3	2
79	Confinement and localization effects revealed for thin films of the miscible blend poly(vinyl methyl) Tj ETQq1 1 0	.784314 r 1.6	gBT /Overloo
80	Characterization of Polymer Nanocomposites. Research Topics in Aerospace, 2021, , 55-77.	0.7	2
81	Energy dependent XPS measurements on thin films of a poly(vinyl methyl ether)/polystyrene blend concentration profile on a nanometer resolution to understand the behavior of nanofilms. Soft Matter, 2021, 17, 6985-6994.	2.7	2
82	Low Frequency Vibrations and Diffusion in Disordered Polymers Bearing an Intrinsic Microporosity as Revealed by Neutron Scattering. Crystals, 2021, 11, 1482.	2.2	2
83	Molecular mobility in highâ€performance polynorbornenes: A combined broadband dielectric, advanced calorimetry, and neutron scattering investigation. Polymer Engineering and Science, 0, , .	3.1	2
84	Multiple glassy dynamics of a homologous series of triphenylene-based columnar liquid crystals – A study by broadband dielectric spectroscopy and advanced calorimetry. Journal of Molecular Liquids, 2022, 358, 119212.	4.9	2