Sam Mathew

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9254831/publications.pdf Version: 2024-02-01

SAM ΜΑΤΗΓΙΜ

#	Article	IF	CITATIONS
1	ï‰-Transaminases for the Production of Optically Pure Amines and Unnatural Amino Acids. ACS Catalysis, 2012, 2, 993-1001.	11.2	264
2	Biochemical characterization of thermostable ω-transaminase from Sphaerobacter thermophilus and its application for producing aromatic β- and γ-amino acids. Enzyme and Microbial Technology, 2016, 87-88, 52-60.	3.2	64
3	One-pot one-step deracemization of amines using ï‰-transaminases. Chemical Communications, 2013, 49, 8629.	4.1	52
4	Deracemization of unnatural amino acid: homoalanine using d-amino acid oxidase and ω-transaminase. Organic and Biomolecular Chemistry, 2012, 10, 2482.	2.8	43
5	Enhancing Thermostability and Organic Solvent Tolerance of ï‰â€Transaminase through Global Incorporation of Fluorotyrosine. Advanced Synthesis and Catalysis, 2014, 356, 993-998.	4.3	40
6	Engineering Transaminase for Stability Enhancement and Site‧pecific Immobilization through Multiple Noncanonical Amino Acids Incorporation. ChemCatChem, 2015, 7, 417-421.	3.7	40
7	Production of chiral β-amino acids using ω-transaminase from Burkholderia graminis. Journal of Biotechnology, 2015, 196-197, 1-8.	3.8	33
8	Identification of novel thermostable ï‰-transaminase and its application for enzymatic synthesis of chiral amines at high temperature. RSC Advances, 2016, 6, 69257-69260.	3.6	33
9	Asymmetric synthesis of aromatic βâ€amino acids using ωâ€transaminase: Optimizing the lipase concentration to obtain thermodynamically unstable βâ€keto acids. Biotechnology Journal, 2016, 11, 185-190.	3.5	32
10	Understanding High-Salt and Cold Adaptation of a Polyextremophilic Enzyme. Microorganisms, 2020, 8, 1594.	3.6	30
11	Enantio- and regioselective <i>ene</i> -reductions using F ₄₂₀ H ₂ -dependent enzymes. Chemical Communications, 2018, 54, 11208-11211.	4.1	29
12	One-Pot Chemoenzymatic Conversion of Alkynes to Chiral Amines. ACS Catalysis, 2021, 11, 12565-12569.	11.2	26
13	Enzymatic synthesis of chiral γ-amino acids using ω-transaminase. Chemical Communications, 2014, 50, 12680-12683.	4.1	24
14	Biotransformation of β-keto nitriles to chiral (S)-β-amino acids using nitrilase and ω-transaminase. Biotechnology Letters, 2017, 39, 535-543.	2.2	24
15	High throughput screening methods for ω-transaminases. Biotechnology and Bioprocess Engineering, 2013, 18, 1-7.	2.6	22
16	Kinetic resolution of amines by (R)-selective omega-transaminase from Mycobacterium vanbaalenii. Journal of Industrial and Engineering Chemistry, 2015, 23, 128-133.	5.8	14
17	An in silico approach to evaluate the polyspecificity of methionyl-tRNA synthetases. Journal of Molecular Graphics and Modelling, 2013, 39, 79-86.	2.4	6