
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9254803/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measuring the Expansion or Contraction of Galaxies. Research Notes of the AAS, 2022, 6, 26.	0.7	1
2	A Hot Subdwarf Model for the 18.18 minutes Pulsar GLEAM-X. Research Notes of the AAS, 2022, 6, 27.	0.7	8
3	Observational signatures of sub-relativistic meteoroids. Advances in Space Research, 2022, , .	2.6	Ο
4	Signatures of population III supernovae at Cosmic Dawn: the case of GN-z11-flash. General Relativity and Gravitation, 2022, 54, 1.	2.0	4
5	Gravitational Redshift for Wide Binaries in Gaia eDR3. Research Notes of the AAS, 2022, 6, 55.	0.7	5
6	Time Evolution of the CMB Quadrupole. Research Notes of the AAS, 2022, 6, 44.	0.7	1
7	Are the newly-discovered <i>z</i> â^¼ 13 drop-out sources starburst galaxies or quasars?. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 514, L6-L10.	3.3	14
8	Spurious Radial Migration from Relativistic Effects in the Milky Way Disk. Research Notes of the AAS, 2022, 6, 72.	0.7	0
9	Limiting Flux versus Redshift as a Flag of New Physics. Research Notes of the AAS, 2022, 6, 73.	0.7	0
10	Effective Self-interaction of Dark Matter from Gravitational Scattering. Astrophysical Journal Letters, 2022, 929, L24.	8.3	2
11	New Constraints on the Composition and Initial Speed of CNEOS 2014-01-08. Research Notes of the AAS, 2022, 6, 81.	0.7	3
12	A Statistical Detection of Wide Binary Systems in the Ultrafaint Dwarf Galaxy Reticulum II. Astrophysical Journal, 2022, 930, 54.	4.5	2
13	Eccentricity evolution in gaseous dynamical friction. Monthly Notices of the Royal Astronomical Society, 2022, 513, 5465-5473.	4.4	8
14	Intergalactic Travel with MOND Rockets. Research Notes of the AAS, 2022, 6, 101.	0.7	1
15	Galactic Kites. Research Notes of the AAS, 2022, 6, 104.	0.7	1
16	Detecting the Memory Effect from a Massive Black Hole Merger at the Galactic Center through Lunar Ranging. Research Notes of the AAS, 2022, 6, 98.	0.7	0
17	Implication of Spin Constraints by the Event Horizon Telescope on Stellar Orbits in the Galactic Center. Astrophysical Journal Letters, 2022, 932, L17.	8.3	15
18	Where to Find Overmassive Brown Dwarfs: New Benchmark Systems for Binary Evolution. Astrophysical Journal, 2022, 932, 91.	4.5	1

#	Article	IF	CITATIONS
19	Quantum Tunneling of Fuzzy Dark Matter out of Satellite Galaxies. Research Notes of the AAS, 2022, 6, 120.	0.7	2
20	Reply to: The breakup of a long-period comet is not a likely match to the Chicxulub impactor. Scientific Reports, 2022, 12, .	3.3	0
21	Lensing in the darkness: a Bayesian analysis of 22 <i>Chandra</i> sources at <i>z</i> ≳ 6 shows no evidence of lensing. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2855-2863.	4.4	1
22	Merger Rates of Intermediate-mass Black Hole Binaries in Nuclear Star Clusters. Astrophysical Journal, 2022, 933, 170.	4.5	13
23	Halo Meteors. New Astronomy, 2021, 84, 101545.	1.8	1
24	Repeated impact-driven plume formation on Enceladus over megayear timescales. Icarus, 2021, 357, 114281.	2.5	2
25	The Observed Rate of Binary Black Hole Mergers can be Entirely Explained by Globular Clusters. Research Notes of the AAS, 2021, 5, 19.	0.7	31
26	Breakup of a long-period comet as the origin of the dinosaur extinction. Scientific Reports, 2021, 11, 3803.	3.3	11
27	Detectability of gravitational waves from a population of inspiralling black holes in Milky Way-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3932-3941.	4.4	6
28	Eppur Ã piatto? The Cosmic Chronometers Take on Spatial Curvature and Cosmic Concordance. Astrophysical Journal, 2021, 908, 84.	4.5	112
29	Tidal dissipation impact on the eccentric onset of common envelope phases in massive binary star systems. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5569-5582.	4.4	12
30	Characteristics of aquatic biospheres on temperate planets around Sun-like stars and M dwarfs. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3434-3448.	4.4	5
31	Constraining neutron star radii in black hole–neutron star mergers from their electromagnetic counterparts. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2861-2865.	4.4	7
32	Physical Constraints on Motility with Applications to Possible Life on Mars and Enceladus. Planetary Science Journal, 2021, 2, 101.	3.6	2
33	Properties of ultralight bosons from heavy quasar spins via superradiance. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 007.	5.4	22
34	Measuring the Mass and Concentration of Dark Matter Halos from the Velocity Dispersion Profile of their Stars. Astrophysical Journal, 2021, 912, 114.	4.5	4
35	Morphological Types of DM Halos in Milky Way-like Galaxies in the TNG50 Simulation: Simple, Twisted, or Stretched. Astrophysical Journal, 2021, 913, 36.	4.5	15
36	Gravitational-wave Lunar Observatory for Cosmology. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 044.	5.4	19

#	Article	IF	CITATIONS
37	Explaining Neptune's Eccentricity. Research Notes of the AAS, 2021, 5, 145.	0.7	Ο
38	The Challenge to MOND from Ultra-faint Dwarf Galaxies. Astrophysical Journal Letters, 2021, 914, L37.	8.3	5
39	Thermal equilibrium of an ideal gas in a free-floating box. American Journal of Physics, 2021, 89, 789-792.	0.7	0
40	Interstellar objects outnumber Solar system objects in the Oort cloud. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 507, L16-L18.	3.3	11
41	Finely Tuned Models Sacrifice Explanatory Depth. Foundations of Physics, 2021, 51, 1.	1.3	2
42	Impact of Natal Kicks on Merger Rates and Spin–Orbit Misalignments of Black Hole–Neutron Star Mergers. Astrophysical Journal Letters, 2021, 918, L38.	8.3	18
43	Using gravitational wave parallax to measure the Hubble parameter with pulsar timing arrays. Physical Review D, 2021, 104, .	4.7	8
44	Intelligent responses to our technological signals will not arrive in fewer than three millennia. Acta Astronautica, 2021, 189, 349-351.	3.2	1
45	Implications of recoil kicks for black hole mergers from LIGO/Virgo catalogs. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3879-3884.	4.4	11
46	The search for the farthest quasar: consequences for black hole growth and seed models. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1885-1891.	4.4	20
47	The mass budget necessary to explain †Oumuamua as a nitrogen iceberg. New Astronomy, 2021, 92, 101730.	1.8	8
48	A Turbulent Heliosheath Driven by the Rayleigh–Taylor Instability. Astrophysical Journal, 2021, 922, 181.	4.5	21
49	Positron Effects on Polarized Images and Spectra from Jet and Accretion Flow Models of M87* and Sgr A*. Astrophysical Journal, 2021, 923, 272.	4.5	13
50	Photosynthesis on exoplanets and exomoons from reflected light. International Journal of Astrobiology, 2020, 19, 210-219.	1.6	10
51	Formation and Merging of Mass Gap Black Holes in Gravitational-wave Merger Events from Wide Hierarchical Quadruple Systems. Astrophysical Journal Letters, 2020, 888, L3.	8.3	39
52	Electric sails are potentially more effective than light sails near most stars. Acta Astronautica, 2020, 168, 146-154.	3.2	9
53	A real-time search for interstellar impacts on the moon. Acta Astronautica, 2020, 173, 53-55.	3.2	4
54	Searching for Black Holes in the Outer Solar System with LSST. Astrophysical Journal Letters, 2020, 898, L4.	8.3	6

#	Article	IF	CITATIONS
55	Probingintermediate-mass black holes in M87 through multiwavelength gravitational wave observations. Monthly Notices of the Royal Astronomical Society, 2020, 495, 536-543.	4.4	10
56	New empirical constraints on the cosmological evolution of gas and stars in galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1124-1131.	4.4	11
57	On Spin dependence of the Fundamental Plane of black hole activity. Monthly Notices of the Royal Astronomical Society, 2020, 495, 278-284.	4.4	7
58	Propulsion of Spacecraft to Relativistic Speeds Using Natural Astrophysical Sources. Astrophysical Journal, 2020, 894, 36.	4.5	23
59	Can Planet Nine Be Detected Gravitationally by a Subrelativistic Spacecraft?. Astrophysical Journal Letters, 2020, 895, L35.	8.3	3
60	Explosions Driven by the Coalescence of a Compact Object with the Core of a Massive-star Companion inside a Common Envelope: Circumstellar Properties, Light Curves, and Population Statistics. Astrophysical Journal, 2020, 892, 13.	4.5	57
61	Separating Accretion and Mergers in the Cosmic Growth of Black Holes with X-Ray and Gravitational-wave Observations. Astrophysical Journal, 2020, 895, 95.	4.5	29
62	Merging Black Holes in the Low-mass and High-mass Gaps from 2Â+Â2 Quadruple Systems. Astrophysical Journal Letters, 2020, 895, L15.	8.3	55
63	Impacts of Dust Grains Accelerated by Supernovae on the Moon. Astrophysical Journal Letters, 2020, 895, L42.	8.3	3
64	Determining the Composition of Relativistic Jets from Polarization Maps. Astrophysical Journal, 2020, 896, 30.	4.5	16
65	A small and round heliosphere suggested by magnetohydrodynamic modelling of pick-up ions. Nature Astronomy, 2020, 4, 675-683.	10.1	50
66	Periodic Fast Radio Bursts from Young Neutron Stars. Astrophysical Journal, 2020, 890, 162.	4.5	9
67	What's in a name: the etymology of astrobiology. International Journal of Astrobiology, 2020, 19, 379-385.	1.6	4
68	Gravitational-wave Captures by Intermediate-mass Black Holes in Galactic Nuclei. Astrophysical Journal, 2020, 897, 46.	4.5	18
69	Pre-common-envelope Mass Loss from Coalescing Binary Systems. Astrophysical Journal, 2020, 895, 29.	4.5	32
70	Reality or Mirage? Observational Test and Implications for the Claimed Extremely Magnified Quasar at zÂ=Â6.3. Astrophysical Journal, 2020, 889, 52.	4.5	10
71	Observational signatures of the black hole mass distribution in the galactic center. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 021-021.	5.4	13
72	Prospects for Life on Temperate Planets around Brown Dwarfs. Astrophysical Journal, 2020, 888, 102.	4.5	6

#	Article	IF	CITATIONS
73	Upper Limit on the Dissipation of Gravitational Waves in Gravitationally Bound Systems. Astrophysical Journal Letters, 2020, 890, L16.	8.3	5
74	Exporting terrestrial life out of the Solar System with gravitational slingshots of Earthgrazing bodies. International Journal of Astrobiology, 2020, 19, 260-263.	1.6	2
75	On the Habitable Lifetime of Terrestrial Worlds with High Radionuclide Abundances. Astrophysical Journal Letters, 2020, 889, L20.	8.3	7
76	Repeated gravitational lensing of gravitational waves in hierarchical black hole triples. Physical Review D, 2020, 101, .	4.7	23
77	Possible Transfer of Life by Earth-Grazing Objects to Exoplanetary Systems. Life, 2020, 10, 44.	2.4	3
78	Electromagnetic signals from the decay of free neutrons in the first hours of neutron star mergers. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1753-1760.	4.4	14
79	Searching for Exotic Cores with Binary Neutron Star Inspirals. Astrophysical Journal Letters, 2020, 893, L4.	8.3	17
80	Calibrating the binary black hole population in nuclear star clusters through tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4307-4318.	4.4	10
81	Runaway Coalescence of Pre-common-envelope Stellar Binaries. Astrophysical Journal, 2020, 893, 106.	4.5	19
82	Detecting Black Hole Occultations by Stars with Space Interferometric Telescopes. Astrophysical Journal, 2020, 899, 8.	4.5	1
83	Constraining the Delay Time Distribution of Compact Binary Objects from the Stochastic Gravitational-wave Background Searches. Astrophysical Journal, 2020, 901, 137.	4.5	8
84	Constraints on the Abundance of 0.01 c Stellar Engines in the Milky Way. Astrophysical Journal, 2020, 905, 175.	4.5	2
85	Global Stellar Budget for LIGO Black Holes. Astrophysical Journal Letters, 2020, 889, L35.	8.3	3
86	Constraints on Aquatic Photosynthesis for Terrestrial Planets around Other Stars. Astrophysical Journal Letters, 2020, 889, L15.	8.3	7
87	Detecting Interstellar Objects through Stellar Occultations. Astrophysical Journal Letters, 2020, 891, L3.	8.3	3
88	The Nearest Discovered Black Hole Is Likely Not in a Triple Configuration. Astrophysical Journal Letters, 2020, 897, L29.	8.3	7
89	Formation of Mass Gap Objects in Highly Asymmetric Mergers. Astrophysical Journal Letters, 2020, 899, L15.	8.3	31
90	Destruction of Molecular Hydrogen Ice and Implications for 1I/2017 U1 (â€~Oumuamua). Astrophysical Journal Letters, 2020, 899, L23.	8.3	24

#	Article	IF	CITATIONS
91	The Case for an Early Solar Binary Companion. Astrophysical Journal Letters, 2020, 899, L24.	8.3	7
92	Potential for Liquid Water Biochemistry Deep under the Surfaces of the Moon, Mars, and beyond. Astrophysical Journal Letters, 2020, 901, L11.	8.3	8
93	An Upper Limit on the Spin of SgrA* Based on Stellar Orbits in Its Vicinity. Astrophysical Journal Letters, 2020, 901, L32.	8.3	50
94	On the Origin of GW190521-like Events from Repeated Black Hole Mergers in Star Clusters. Astrophysical Journal Letters, 2020, 902, L26.	8.3	87
95	Observable Signatures of the Ejection Speed of Interstellar Objects from Their Birth Systems. Astrophysical Journal Letters, 2020, 903, L20.	8.3	7
96	Risks for Life on Proxima b from Sterilizing Impacts. Planetary Science Journal, 2020, 1, 86.	3.6	1
97	It is feasible to directly measure black hole masses in the first galaxies. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 032-032.	5.4	3
98	Hydrodynamic Winds from Twin-star Binaries. Astrophysical Journal, 2020, 902, 85.	4.5	12
99	FRB 121102 Bursts at a Constant Rate per Log Time. Astrophysical Journal Letters, 2020, 902, L17.	8.3	3
100	Constraining the host galaxy halos of massive black holes from LISA event rates. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 055-055.	5.4	6
101	Absence of a thick atmosphere on the terrestrial exoplanet LHSÂ3844b. Nature, 2019, 573, 87-90.	27.8	139
102	Constraining a black hole companion for M87* through imaging by the Event Horizon Telescope. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 488, L90-L93.	3.3	15
103	Brown Dwarf Atmospheres as the Potentially Most Detectable and Abundant Sites for Life. Astrophysical Journal, 2019, 883, 143.	4.5	14
104	An Upper Limit on Primordial Magnetic Fields from Ultra-faint Dwarf Galaxies. Astrophysical Journal Letters, 2019, 877, L27.	8.3	10
105	A fast radio burst in the direction of the Virgo Cluster. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1-8.	4.4	19
106	Black hole–neutron star mergers from triples – II. The role of metallicity and spin–orbit misalignment. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4991-5001.	4.4	19
107	<i>Colloquium</i> : Physical constraints for the evolution of life on exoplanets. Reviews of Modern Physics, 2019, 91, .	45.6	39
108	Explaining the enhanced star formation rate of Jellyfish galaxies in galaxy clusters. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 486, L26-L30.	3.3	12

#	Article	IF	CITATIONS
109	Constraining the stellar mass function from the deficiency of tidal disruption flares in the nuclei of massive galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4413-4422.	4.4	8
110	Black hole–neutron star mergers from triples. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4443-4450.	4.4	67
111	Nonthermal Emission from the Interaction of Magnetized Exoplanets with the Wind of Their Host Star. Astrophysical Journal Letters, 2019, 874, L23.	8.3	8
112	Turning up the Heat on â€~Oumuamua. Astrophysical Journal Letters, 2019, 875, L23.	8.3	5
113	The relation between transverse and radial velocity distributions for observations of an isotropic velocity field. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 483, L132-L137.	3.3	2
114	Explaining the Statistical Properties of Fast Radio Bursts with Suppressed Low-frequency Emission. Astrophysical Journal, 2019, 874, 72.	4.5	12
115	Role of stellar physics in regulating the critical steps for life. International Journal of Astrobiology, 2019, 18, 527-546.	1.6	16
116	Unique Fingerprints of Alternatives to Inflation in the Primordial Power Spectrum. Physical Review Letters, 2019, 122, 121301.	7.8	27
117	Constraining sub-parsec binary supermassive black holes in quasars with multi-epoch spectroscopy – III. Candidates from continued radial velocity tests. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3288-3307.	4.4	42
118	On the Existence of Brown Dwarfs More Massive than the Hydrogen Burning Limit. Astrophysical Journal, 2019, 871, 227.	4.5	17
119	Photosynthesis on habitable planets around low-mass stars. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5924-5928.	4.4	24
120	Identifying Interstellar Objects Trapped in the Solar System through Their Orbital Parameters. Astrophysical Journal Letters, 2019, 872, L10.	8.3	24
121	A dynamical origin for planets in triple star systems. Monthly Notices of the Royal Astronomical Society, 2019, 483, 648-653.	4.4	8
122	Supernovae in massive binaries and compact object mergers near supermassive black holes. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 045-045.	5.4	1
123	Finite-temperature equations of state for neutron star mergers. Physical Review D, 2019, 100, .	4.7	32
124	Detecting the orbital motion of nearby supermassive black hole binaries with <i>Gaia</i> . Physical Review D, 2019, 100, .	4.7	5
125	Relative Likelihood of Success in the Search for Primitive versus Intelligent Extraterrestrial Life. Astrobiology, 2019, 19, 28-39.	3.0	30
126	Astrometric detection of intermediate-mass black holes at the Galactic Centre. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3669-3677.	4.4	7

#	Article	IF	CITATIONS
127	Dependence of Biological Activity on the Surface Water Fraction of Planets. Astronomical Journal, 2019, 157, 25.	4.7	23
128	Most Lensed Quasars at zÂ>Â6 are Missed by Current Surveys. Astrophysical Journal Letters, 2019, 870, L12.	8.3	25
129	Shock breakouts from tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2872-2877.	4.4	12
130	Subsurface exolife. International Journal of Astrobiology, 2019, 18, 112-141.	1.6	33
131	â€~Oumuamua's Geometry Could Be More Extreme than Previously Inferred. Research Notes of the AAS, 2019, 3, 15.	0.7	7
132	Radio Flares from Collisions of Neutron Stars with Interstellar Asteroids. Research Notes of the AAS, 2019, 3, 130.	0.7	3
133	An Argument for a Kilometer-scale Nucleus of C/2019 Q4. Research Notes of the AAS, 2019, 3, 132.	0.7	1
134	Habitable Evaporated Cores and the Occurrence of Panspermia Near the Galactic Center. Astrophysical Journal Letters, 2018, 855, L1.	8.3	23
135	Single progenitor model for GW150914 and GW170104. Physical Review D, 2018, 97, .	4.7	24
136	The Propitious Role of Solar Energetic Particles in the Origin of Life. Astrophysical Journal, 2018, 853, 10.	4.5	29
137	SMBH Seeds: Model Discrimination with High-energy Emission Based on Scaling Relation Evolution. Astrophysical Journal, 2018, 854, 4.	4.5	6
138	Formation and spatial distribution of hypervelocity stars in AGN outflows. New Astronomy, 2018, 61, 95-99.	1.8	14
139	Evolution of the Black Hole Mass Function in Star Clusters from Multiple Mergers. Astrophysical Journal Letters, 2018, 858, L8.	8.3	14
140	Physical constraints on the likelihood of life on exoplanets. International Journal of Astrobiology, 2018, 17, 116-126.	1.6	40
141	Enhanced Rates of Fast Radio Bursts from Galaxy Clusters. Astrophysical Journal, 2018, 863, 132.	4.5	18
142	Glimmering in the Dark: Modeling the Low-mass End of the M _• –σ Relation and of the Quasar Luminosity Function. Astrophysical Journal Letters, 2018, 864, L6.	8.3	33
143	Finding the missing baryons with fast radio bursts and Sunyaev-Zeldovich maps. Physical Review D, 2018, 98, .	4.7	30
144	Galactic Panspermia. Astrophysical Journal Letters, 2018, 868, L12.	8.3	40

#	Article	IF	CITATIONS
145	Gauging fine-tuning. Physical Review D, 2018, 98, .	4.7	8
146	Could Solar Radiation Pressure Explain â€~Oumuamua's Peculiar Acceleration?. Astrophysical Journal Letters, 2018, 868, L1.	8.3	96
147	Detecting stellar lensing of gravitational waves with ground-based observatories. Physical Review D, 2018, 98, .	4.7	56
148	Redshift Evolution of the Black Hole Merger Rate from Globular Clusters. Astrophysical Journal Letters, 2018, 866, L5.	8.3	96
149	21-cm Fluctuations from Charged Dark Matter. Physical Review Letters, 2018, 121, 121301.	7.8	67
150	Detection strategies for the first supernovae with JWST. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2202-2213.	4.4	33
151	Is life most likely around Sun-like stars?. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 020-020.	5.4	25
152	Implications of Captured Interstellar Objects for Panspermia and Extraterrestrial Life. Astronomical Journal, 2018, 156, 193.	4.7	25
153	Evaporation of planetary atmospheres due to XUV illumination by quasars. Monthly Notices of the Royal Astronomical Society, 2018, 479, 171-182.	4.4	19
154	Is Extraterrestrial Life Suppressed on Subsurface Ocean Worlds due to the Paucity of Bioessential Elements?. Astronomical Journal, 2018, 156, 151.	4.7	29
155	A small amount of mini-charged dark matter could cool the baryons in the early Universe. Nature, 2018, 557, 684-686.	27.8	203
156	Dating the Tidal Disruption of Globular Clusters with GAIAÂData on Their Stellar Streams. Astrophysical Journal Letters, 2018, 859, L13.	8.3	5
157	Self-sustaining Star Formation Fronts in Filaments during the Cosmic Dawn. Astrophysical Journal Letters, 2018, 862, L14.	8.3	1
158	Implications of Tides for Life on Exoplanets. Astrobiology, 2018, 18, 967-982.	3.0	21
159	Repeated Imaging of Massive Black Hole Binary Orbits with Millimeter Interferometry: Measuring Black Hole Masses and the Hubble Constant. Astrophysical Journal, 2018, 863, 185.	4.5	25
160	Periodic optical variability and debris accretion in white dwarfs: a test for a causal connection*. Monthly Notices of the Royal Astronomical Society, 2018, 476, 933-942.	4.4	9
161	Spinup and Disruption of Interstellar Asteroids by Mechanical Torques, and Implications for 1I/2017 U1 (†̃Oumuamua). Astrophysical Journal, 2018, 860, 42.	4.5	16
162	Optimal Target Stars in the Search for Life. Astrophysical Journal Letters, 2018, 857, L17.	8.3	11

#	Article	IF	CITATIONS
163	A Model Connecting Galaxy Masses, Star Formation Rates, and Dust Temperatures across Cosmic Time. Astrophysical Journal, 2018, 854, 36.	4.5	21
164	Limitations of Chemical Propulsion for Interstellar Escape from Habitable Zones Around Low-mass Stars. Research Notes of the AAS, 2018, 2, 154.	0.7	3
165	Interferometric Measurement of Acceleration at Relativistic Speeds. Astrophysical Journal Letters, 2017, 834, L20.	8.3	10
166	DETECTING TRIPLE SYSTEMS WITH GRAVITATIONAL WAVE OBSERVATIONS. Astrophysical Journal, 2017, 834, 200.	4.5	68
167	Predicted Extension of the Sagittarius Stream to the Milky Way Virial Radius. Astrophysical Journal, 2017, 836, 92.	4.5	55
168	Stability of a Light Sail Riding on a Laser Beam. Astrophysical Journal Letters, 2017, 837, L20.	8.3	53
169	Fast Radio Bursts from Extragalactic Light Sails. Astrophysical Journal Letters, 2017, 837, L23.	8.3	43
170	The Interaction of Relativistic Spacecrafts with the Interstellar Medium. Astrophysical Journal, 2017, 837, 5.	4.5	61
171	An intermediate-mass black hole in the centre of the globular cluster 47 Tucanae. Nature, 2017, 542, 203-205.	27.8	149
172	Spectral Energy Distribution and Radio Halo of NGC 253 at Low Radio Frequencies. Astrophysical Journal, 2017, 838, 68.	4.5	23
173	Inferring the Composition of Super-Jupiter Mass Companions of Pulsars with Radio Line Spectroscopy. Astrophysical Journal, 2017, 836, 135.	4.5	31
174	Natural and artificial spectral edges in exoplanets. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 470, L82-L86.	3.3	27
175	Enhanced interplanetary panspermia in the TRAPPIST-1 system. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6689-6693.	7.1	44
176	The Detectability of Radio Auroral Emission from Proxima b. Astrophysical Journal Letters, 2017, 849, L10.	8.3	37
177	Electromagnetic Forces on a Relativistic Spacecraft in the Interstellar Medium. Astrophysical Journal, 2017, 848, 31.	4.5	19
178	Risks for Life on Habitable Planets from Superflares of Their Host Stars. Astrophysical Journal, 2017, 848, 41.	4.5	59
179	The first supermassive black holes. Astronomy and Geophysics, 2017, 58, 3.22-3.26.	0.2	25
180	Jetted tidal disruptions of stars as a flag of intermediate mass black holes at high redshifts. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4286-4299.	4.4	9

#	Article	IF	CITATIONS
181	A Fast Radio Burst Occurs Every Second throughout the Observable Universe. Astrophysical Journal Letters, 2017, 846, L27.	8.3	38
182	An Upper Limit on the Milky Way Mass from the Orbit of the Sagittarius Dwarf Satellite. Astrophysical Journal, 2017, 847, 42.	4.5	29
183	Reduced Diversity of Life around Proxima Centauri and TRAPPIST-1. Astrophysical Journal Letters, 2017, 846, L21.	8.3	23
184	Constraining Relativistic Generalizations of Modified Newtonian Dynamics with Gravitational Waves. Physical Review Letters, 2017, 119, 031102.	7.8	20
185	A Space-based Observational Strategy for Characterizing the First Stars and Galaxies Using the Redshifted 21 cm Global Spectrum. Astrophysical Journal, 2017, 844, 33.	4.5	33
186	Preliminary Evidence for a Virial Shock around the Coma Galaxy Cluster. Astrophysical Journal, 2017, 845, 24.	4.5	14
187	Hunting black holes with Gaia. Monthly Notices of the Royal Astronomical Society, 2017, 470, 2611-2616.	4.4	56
188	Maximum Redshift of Gravitational Wave Merger Events. Physical Review Letters, 2017, 119, 221104.	7.8	34
189	The Resilience of Life to Astrophysical Events. Scientific Reports, 2017, 7, 5419.	3.3	29
190	Constraining the Milky Way mass with hypervelocity stars. New Astronomy, 2017, 55, 32-38.	1.8	34
191	Optical–infrared flares and radio afterglows by Jovian planets inspiraling into their host stars. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1421-1427.	4.4	27
192	Searching for giga-Jansky fast radio bursts from the Milky Way with a global array of low-cost radio receivers. Monthly Notices of the Royal Astronomical Society, 2017, 467, 3920-3923.	4.4	26
193	Lyman <i>α</i> radiation hydrodynamics of galactic winds before cosmic reionization. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2963-2978.	4.4	36
194	Eclipsing Stellar Binaries in the Galactic Center. Astrophysical Journal, 2017, 851, 131.	4.5	8
195	LISA detection of binary black holes in the Milky Way galaxy. Monthly Notices of the Royal Astronomical Society, 2017, 469, 930-937.	4.4	15
196	PREDICTED SIZES OF PRESSURE-SUPPORTED HI CLOUDS IN THE OUTSKIRTS OF THE VIRGO CLUSTER. Astrophysical Journal Letters, 2016, 824, L7.	8.3	14
197	DENSITY JUMPS NEAR THE VIRIAL RADIUS OF GALAXY CLUSTERS. Astrophysical Journal, 2016, 824, 69.	4.5	13
198	PRECISE MEASUREMENT OF THE REIONIZATION OPTICAL DEPTH FROM THE GLOBAL 21 cm SIGNAL ACCOUNTING FOR COSMIC HEATING. Astrophysical Journal, 2016, 821, 59.	4.5	15

#	Article	IF	CITATIONS
199	PROMPT RADIATION AND MASS OUTFLOWS FROM THE STREAM–STREAM COLLISIONS OF TIDAL DISRUPTION EVENTS. Astrophysical Journal, 2016, 830, 125.	4.5	96
200	LOW-FREQUENCY OBSERVATIONS OF LINEARLY POLARIZED STRUCTURES IN THE INTERSTELLAR MEDIUM NEAR THE SOUTH GALACTIC POLE. Astrophysical Journal, 2016, 830, 38.	4.5	58
201	DELAY SPECTRUM WITH PHASE-TRACKING ARRAYS: EXTRACTING THE H i POWER SPECTRUM FROM THE EPOCH OF REIONIZATION. Astrophysical Journal, 2016, 833, 213.	4.5	15
202	PROSPECTS FOR CHARACTERIZING THE ATMOSPHERE OF PROXIMA CENTAURI b. Astrophysical Journal Letters, 2016, 832, L12.	8.3	75
203	Constraining the CMB optical depth through the dispersion measure of cosmological radio transients. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 004-004.	5.4	27
204	Cumulative neutrino background from quasar-driven outflows. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 012-012.	5.4	10
205	FIRST SEASON MWA EOR POWER SPECTRUM RESULTS AT REDSHIFT 7. Astrophysical Journal, 2016, 833, 102.	4.5	147
206	THE IMPORTANCE OF WIDE-FIELD FOREGROUND REMOVAL FOR 21 cm COSMOLOGY: A DEMONSTRATION WITH EARLY MWA EPOCH OF REIONIZATION OBSERVATIONS. Astrophysical Journal, 2016, 819, 8.	4.5	65
207	ELECTROMAGNETIC COUNTERPARTS TO BLACK HOLE MERGERS DETECTED BY LIGO. Astrophysical Journal Letters, 2016, 819, L21.	8.3	179
208	PERSISTENT ASYMMETRIC STRUCTURE OF SAGITTARIUS A* ON EVENT HORIZON SCALES. Astrophysical Journal, 2016, 820, 90.	4.5	65
209	BLACKBODY RADIATION FROM ISOLATED NEPTUNES. Astrophysical Journal Letters, 2016, 822, L11.	8.3	35
210	A high reliability survey of discrete Epoch of Reionization foreground sources in the MWA EoRO field. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4151-4175.	4.4	27
211	resting General Relativity with Accretion-Flow Imaging of Sgr <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mi mathvariant="normal">A</mml:mi </mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:mrow></mmi:math 	7.8 ∙ < /mml:mr	60 row>
212	Physical Review Letters, 2016, 117, 091101. Relative likelihood for life as a function of cosmic time. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 040-040.	5.4	45
213	Quantum coherent oscillations in the early universe. Physical Review D, 2016, 93, .	4.7	2
214	Large-Scale Distribution of Total Mass versus Luminous Matter from Baryon Acoustic Oscillations: First Search in the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey Data Release 10. Physical Review Letters, 2016, 116, 201302.	7.8	16
215	Circularization of tidally disrupted stars around spinning supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3760-3780.	4.4	138
216	Contribution of quasar-driven outflows to the extragalactic gamma-ray background. Nature Physics, 2016, 12, 1116-1118.	16.7	16

#	Article	IF	CITATIONS
217	Zipf's law from scale-free geometry. Physical Review E, 2016, 93, 032306.	2.1	3
218	THE MURCHISON WIDEFIELD ARRAY 21 cm POWER SPECTRUM ANALYSIS METHODOLOGY. Astrophysical Journal, 2016, 825, 114.	4.5	67
219	Detection of Gravitational Wave Emission by Supermassive Black Hole Binaries Through Tidal Disruption Flares. Scientific Reports, 2016, 6, 35629.	3.3	16
220	CEMP stars: possible hosts to carbon planets in the early Universe. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2482-2491.	4.4	17
221	Evidence for a direct collapse black hole in the Lyman <i>α</i> source CR7. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3143-3151.	4.4	41
222	First limits on the 21Âcm power spectrum during the Epoch of X-ray heating. Monthly Notices of the Royal Astronomical Society, 2016, 460, 4320-4347.	4.4	79
223	Radio crickets: chirping jets from black hole binaries entering their gravitational wave inspiral. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3964-3971.	4.4	10
224	An empirical model for the galaxy luminosity and star formation rate function at high redshift. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2101-2109.	4.4	82
225	Parametrizing Epoch of Reionization foregrounds: a deep survey of low-frequency point-source spectra with the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1057-1070.	4.4	68
226	SDSS J1152+0248: an eclipsing double white dwarf from the <i>KeplerK2</i> campaign. Monthly Notices of the Royal Astronomical Society, 2016, 458, 845-854.	4.4	31
227	CHIPS: THE COSMOLOGICAL H i POWER SPECTRUM ESTIMATOR. Astrophysical Journal, 2016, 818, 139.	4.5	98
228	3-cm FINE STRUCTURE MASERS: A UNIQUE SIGNATURE OF SUPERMASSIVE BLACK HOLE FORMATION VIA DIRECT COLLAPSE IN THE EARLY UNIVERSE. Astrophysical Journal, 2016, 820, 10.	4.5	11
229	LIMITS ON INTERGALACTIC DUST DURING REIONIZATION. Astrophysical Journal Letters, 2016, 816, L16.	8.3	9
230	THE DISTORTION OF THE COSMIC MICROWAVE BACKGROUND SPECTRUM DUE TO INTERGALACTIC DUST. Astrophysical Journal, 2016, 825, 130.	4.5	7
231	Observational cosmology with semi-relativistic stars. Annals of Mathematical Sciences and Applications, 2016, 1, 183-194.	0.4	5
232	Empirical covariance modeling for 21Âcm power spectrum estimation: A method demonstration and new limits from early Murchison Widefield Array 128-tile data. Physical Review D, 2015, 91, .	4.7	99
233	MEASURING THE DIRECTION AND ANGULAR VELOCITY OF A BLACK HOLE ACCRETION DISK VIA LAGGED INTERFEROMETRIC COVARIANCE. Astrophysical Journal, 2015, 813, 132.	4.5	7
234	MAPPING THE DYNAMICS OF COLD GAS AROUND SGR A* THROUGH 21 cm ABSORPTION. Astrophysical Journal Letters, 2015, 814, L4.	8.3	0

#	Article	IF	CITATIONS
235	HerMES: ALMA IMAGING OF <i>HERSCHEL</i> -SELECTED DUSTY STAR-FORMING GALAXIES. Astrophysical Journal, 2015, 812, 43.	4.5	88
236	DETECTABILITY OF LOCAL GROUP DWARF GALAXY ANALOGUES AT HIGH REDSHIFTS. Astrophysical Journal Letters, 2015, 815, L28.	8.3	8
237	Probing the gaseous halo of galaxies through non-thermal emission from AGN-driven outflows. Monthly Notices of the Royal Astronomical Society, 2015, 453, 837-848.	4.4	11
238	Implications of the eccentric Kozai–Lidov mechanism for stars surrounding supermassive black hole binaries. Monthly Notices of the Royal Astronomical Society, 2015, 451, 1341-1349.	4.4	56
239	Optical inverse-Compton emission from clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1990-1998.	4.4	7
240	Resolved magnetic-field structure and variability near the event horizon of Sagittarius A*. Science, 2015, 350, 1242-1245.	12.6	176
241	SETI VIA LEAKAGE FROM LIGHT SAILS IN EXOPLANETARY SYSTEMS. Astrophysical Journal Letters, 2015, 811, L20.	8.3	55
242	Evaporation and accretion of extrasolar comets following white dwarf kicks. Monthly Notices of the Royal Astronomical Society, 2015, 448, 188-206.	4.4	53
243	A SIMPLE PHYSICAL MODEL FOR THE GAS DISTRIBUTION IN GALAXY CLUSTERS. Astrophysical Journal Letters, 2015, 798, L20.	8.3	12
244	CONFIRMATION OF WIDE-FIELD SIGNATURES IN REDSHIFTED 21 cm POWER SPECTRA. Astrophysical Journal Letters, 2015, 807, L28.	8.3	73
245	DISTORTION OF THE LUMINOSITY FUNCTION OF HIGH-REDSHIFT GALAXIES BY GRAVITATIONAL LENSING. Astrophysical Journal, 2015, 806, 256.	4.5	15
246	New insights from deep VLA data on the potentially recoiling black hole CID-42 in the COSMOS field. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1282-1288.	4.4	20
247	THE FASTEST UNBOUND STARS IN THE UNIVERSE. Astrophysical Journal, 2015, 806, 124.	4.5	23
248	WATER FORMATION DURING THE EPOCH OF FIRST METAL ENRICHMENT. Astrophysical Journal Letters, 2015, 804, L29.	8.3	10
249	The Low-Frequency Environment of the Murchison Widefield Array: Radio-Frequency Interference Analysis and Mitigation. Publications of the Astronomical Society of Australia, 2015, 32, .	3.4	107
250	The infinity pool. Nature Physics, 2015, 11, 884-885.	16.7	0
251	Fast radio bursts: the observational case for a Galactic origin. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2183-2189.	4.4	30
252	STATISTICAL SIGNATURES OF PANSPERMIA IN EXOPLANET SURVEYS. Astrophysical Journal Letters, 2015, 810, L3.	8.3	16

#	Article	IF	CITATIONS
253	FOREGROUNDS IN WIDE-FIELD REDSHIFTED 21 cm POWER SPECTRA. Astrophysical Journal, 2015, 804, 14.	4.5	122
254	EVENT HORIZON TELESCOPE EVIDENCE FOR ALIGNMENT OF THE BLACK HOLE IN THE CENTER OF THE MILKY WAY WITH THE INNER STELLAR DISK. Astrophysical Journal, 2015, 798, 15.	4.5	34
255	A TWO-COMPONENT JET MODEL FOR THE TIDAL DISRUPTION EVENT SWIFT J164449.3+573451. Astrophysical Journal, 2015, 798, 13.	4.5	10
256	FINDING ROCKY ASTEROIDS AROUND WHITE DWARFS BY THEIR PERIODIC THERMAL EMISSION. Astrophysical Journal Letters, 2014, 793, L43.	8.3	6
257	A SIZE-DURATION TREND FOR GAMMA-RAY BURST PROGENITORS. Astrophysical Journal Letters, 2014, 794, L8.	8.3	12
258	EFFECTS OF INTERMEDIATE MASS BLACK HOLES ON NUCLEAR STAR CLUSTERS. Astrophysical Journal, 2014, 796, 40.	4.5	45
259	The habitable epoch of the early Universe. International Journal of Astrobiology, 2014, 13, 337-339.	1.6	40
260	ECCENTRICITY GROWTH AND ORBIT FLIP IN NEAR-COPLANAR HIERARCHICAL THREE-BODY SYSTEMS. Astrophysical Journal, 2014, 785, 116.	4.5	152
261	A predicted new population of UV-faint galaxies at z ≳ 4. Monthly Notices of the Royal Astronomical Society, 2014, 439, 1326-1336.	4.4	19
262	Detecting floating black holes as they traverse the gas disc of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2014, 441, 809-812.	4.4	10
263	SIGNATURES OF THE M31-M32 GALACTIC COLLISION. Astrophysical Journal Letters, 2014, 788, L38.	8.3	29
264	REIONIZATION ON LARGE SCALES. IV. PREDICTIONS FOR THE 21 cm SIGNAL INCORPORATING THE LIGHT CONE EFFECT. Astrophysical Journal, 2014, 789, 31.	4.5	38
265	POSSIBLE ORIGIN OF THE G2 CLOUD FROM THE TIDAL DISRUPTION OF A KNOWN GIANT STAR BY SGR A*. Astrophysical Journal Letters, 2014, 786, L12.	8.3	41
266	CONSTRAINING SUB-PARSEC BINARY SUPERMASSIVE BLACK HOLES IN QUASARS WITH MULTI-EPOCH SPECTROSCOPY. II. THE POPULATION WITH KINEMATICALLY OFFSET BROAD BALMER EMISSION LINES. Astrophysical Journal, 2014, 789, 140.	4.5	68
267	CHAOS IN THE TEST PARTICLE ECCENTRIC KOZAI–LIDOV MECHANISM. Astrophysical Journal, 2014, 791, 86.	4.5	115
268	The mutual interaction between Population III stars and self-annihilating dark matter. Monthly Notices of the Royal Astronomical Society, 2014, 441, 822-836.	4.4	24
269	TESTING THE NO-HAIR THEOREM WITH EVENT HORIZON TELESCOPE OBSERVATIONS OF SAGITTARIUS A*. Astrophysical Journal, 2014, 784, 7.	4.5	178
270	Menus for Feeding Black Holes. Space Science Reviews, 2014, 183, 163-187.	8.1	6

#	Article	IF	CITATIONS
271	Fast radio bursts may originate from nearby flaring stars. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 439, L46-L50.	3.3	93
272	Is the universe simpler than \hat{b} CDM?. Contemporary Physics, 2014, 55, 198-211.	1.8	16
273	DETECTING INDUSTRIAL POLLUTION IN THE ATMOSPHERES OF EARTH-LIKE EXOPLANETS. Astrophysical Journal Letters, 2014, 792, L7.	8.3	53
274	RELATIVISTIC REDSHIFTS IN QUASAR BROAD LINES. Astrophysical Journal, 2014, 794, 49.	4.5	15
275	Tidal capture of a primordial black hole by a neutron star: implications for constraints on dark matter. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 026-026.	5.4	55
276	Benefits of diversity. Nature Physics, 2014, 10, 616-617.	16.7	2
277	Pulsations in short gamma ray bursts from black hole-neutron star mergers. Physical Review D, 2013, 87, .	4.7	43
278	Inflationary paradigm in trouble after Planck2013. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2013, 723, 261-266.	4.1	239
279	Thinking outside the simulation box. Nature Physics, 2013, 9, 384-386.	16.7	2
280	Constraining the minimum luminosity of high redshift galaxies through gravitational lensing. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 017-017.	5.4	11
281	The virialization density of peaks with general density profiles under spherical collapse. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 019-019.	5.4	9
282	Constraints on the nature of CID-42: recoil kick or supermassive black hole pair?. Monthly Notices of the Royal Astronomical Society, 2013, 428, 1341-1350.	4.4	34
283	The 21-cm Signal from the cosmological epoch of recombination. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 066-066.	5.4	7
284	Double-peaked narrow-line signatures of dual supermassive black holes in galaxy merger simulations. Monthly Notices of the Royal Astronomical Society, 2013, 429, 2594-2616.	4.4	86
285	Rotation and internal structure of Population III protostars. Monthly Notices of the Royal Astronomical Society, 2013, 431, 1470-1486.	4.4	54
286	Finite, intense accretion bursts from tidal disruption of stars on bound orbits. Monthly Notices of the Royal Astronomical Society, 2013, 434, 909-924.	4.4	140
287	A suppressed contribution of low-mass galaxies to reionization due to supernova feedback. Monthly Notices of the Royal Astronomical Society, 2013, 428, 2741-2754.	4.4	38
288	Consequences of strong compression in tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2013, 435, 1809-1824.	4.4	169

#	Article	IF	CITATIONS
289	The ratio of CO to total gas mass in high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 435, 2407-2415.	4.4	13
290	Superluminous X-ray emission from the interaction of supernova ejecta with dense circumstellar shells. Monthly Notices of the Royal Astronomical Society, 2013, 433, 838-848.	4.4	17
291	CONSTRAINING SUB-PARSEC BINARY SUPERMASSIVE BLACK HOLES IN QUASARS WITH MULTI-EPOCH SPECTROSCOPY. I. THE GENERAL QUASAR POPULATION. Astrophysical Journal, 2013, 775, 49.	4.5	75
292	REIONIZATION ON LARGE SCALES. II. DETECTING PATCHY REIONIZATION THROUGH CROSS-CORRELATION OF THE COSMIC MICROWAVE BACKGROUND. Astrophysical Journal, 2013, 776, 82.	4.5	20
293	REIONIZATION ON LARGE SCALES. III. PREDICTIONS FOR LOW-â,," COSMIC MICROWAVE BACKGROUND POLARIZATION AND HIGH-â,," KINETIC SUNYAEV-ZEL'DOVICH OBSERVABLES. Astrophysical Journal, 2013, 776, 83.	4.5	60
294	RESONANT POST-NEWTONIAN ECCENTRICITY EXCITATION IN HIERARCHICAL THREE-BODY SYSTEMS. Astrophysical Journal, 2013, 773, 187.	4.5	215
295	DYNAMICS OF ASTROPHYSICAL BUBBLES AND BUBBLE-DRIVEN SHOCKS: BASIC THEORY, ANALYTICAL SOLUTIONS, AND OBSERVATIONAL SIGNATURES. Astrophysical Journal, 2013, 768, 113.	4.5	6
296	On Poynting-flux-driven bubbles and shocks around merging neutron star binaries. Monthly Notices of the Royal Astronomical Society, 2013, 431, 2737-2744.	4.4	9
297	REIONIZATION ON LARGE SCALES. I. A PARAMETRIC MODEL CONSTRUCTED FROM RADIATION-HYDRODYNAMIC SIMULATIONS. Astrophysical Journal, 2013, 776, 81.	4.5	89
298	DEVIATION OF STELLAR ORBITS FROM TEST PARTICLE TRAJECTORIES AROUND SGr A* DUE TO TIDES AND WINDS. Astrophysical Journal, 2013, 777, 57.	4.5	11
299	A new rare type of supernovae: hypervelocity stellar collisions at galactic centres. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 434, L26-L30.	3.3	10
300	Escape fraction of the ionizing radiation from starburst galaxies at high redshifts. Monthly Notices of the Royal Astronomical Society, 2013, 431, 2826-2833.	4.4	83
301	Neutrino signatures on the high-transmission regions of the Lyman \$oldsymbol {alpha }\$ forest. Monthly Notices of the Royal Astronomical Society, 2013, 431, 3670-3677.	4.4	21
302	Accumulated tidal heating of stars over multiple pericentre passages near SgrA*. Monthly Notices of the Royal Astronomical Society, 2013, 429, 3040-3046.	4.4	16
303	The origin of the microlensing events observed towards the LMC and the stellar counterpart of the Magellanic stream. Monthly Notices of the Royal Astronomical Society, 2013, 428, 2342-2365.	4.4	42
304	Global 21Âcm signal experiments: A designer's guide. Physical Review D, 2013, 87, .	4.7	54
305	Constraining primordial black-hole bombs through spectral distortions of the cosmic microwave background. Physical Review D, 2013, 88, .	4.7	51
306	HIGH- <i>n</i> HYDROGEN RECOMBINATION LINES FROM THE FIRST GALAXIES. Astrophysical Journal Letters, 2013, 775, L17.	8.3	4

#	Article	IF	CITATIONS
307	Menus for Feeding Black Holes. Space Sciences Series of ISSI, 2013, , 163-187.	0.0	Ο
308	Photon trapping enables super-Eddington growth of black hole seeds in galaxies at high redshift. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2892-2902.	4.4	37
309	Constraining sources of ultra high energy cosmic rays using high energy observations with the Fermi satellite. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 007-007.	5.4	13
310	Observing Lense-Thirring Precession in Tidal Disruption Flares. Physical Review Letters, 2012, 108, 061302.	7.8	77
311	<i>CHANDRA</i> HIGH-RESOLUTION OBSERVATIONS OF CID-42, A CANDIDATE RECOILING SUPERMASSIVE BLACK HOLE. Astrophysical Journal, 2012, 752, 49.	4.5	53
312	PROBING PRE-GALACTIC METAL ENRICHMENT WITH HIGH-REDSHIFT GAMMA-RAY BURSTS. Astrophysical Journal, 2012, 760, 27.	4.5	64
313	Gravitational wave heating of stars and accretion discs. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2407-2412.	4.4	8
314	Detection Technique for Artificially Illuminated Objects in the Outer Solar System and Beyond. Astrobiology, 2012, 12, 290-294.	3.0	34
315	Disruption of a proto-planetary disc by the black hole at the milky way centre. Nature Communications, 2012, 3, 1049.	12.8	53
316	Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87. Science, 2012, 338, 355-358.	12.6	336
317	21 cm cosmology in the 21st century. Reports on Progress in Physics, 2012, 75, 086901.	20.1	665
318	Gas pile-up, gap overflow and Type 1.5 migration in circumbinary discs: application to supermassive black hole binaries. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2680-2700.	4.4	79
319	Gas pile-up, gap overflow and Type 1.5 migration in circumbinary discs: general theory. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2660-2679.	4.4	50
320	Rating research risk. Nature, 2012, 484, 279-279.	27.8	0
321	Effects of supermassive binary black holes on gravitational lenses. Monthly Notices of the Royal Astronomical Society, 2012, 419, 2424-2432.	4.4	5
322	Probing the first stars and black holes in the early Universe with the Dark Ages Radio Explorer (DARE). Advances in Space Research, 2012, 49, 433-450.	2.6	104
323	ldentifying stars of mass >150 M⊙ from their eclipse by a binary companion. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 425, L91-L95.	3.3	3
324	Recoiled star clusters in the Milky Way halo: N-body simulations and a candidate search through the SDSS. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2737-2750.	4.4	20

#	Article	IF	CITATIONS
325	Constraints on the redshift evolution of the LX-SFR relation from the cosmic X-ray backgrounds. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	4.4	23
326	Effect of Population III multiplicity on dark star formation. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	4.4	6
327	Tidal disruption flares of stars from moderately recoiled black holes. Monthly Notices of the Royal Astronomical Society, 2012, 422, 1933-1947.	4.4	26
328	Formation of galactic nuclei with multiple supermassive black holes at high redshifts. Monthly Notices of the Royal Astronomical Society, 2012, 422, 1306-1323.	4.4	68
329	Pair-instability supernovae at the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2012, 422, 2701-2711.	4.4	63
330	Hypervelocity planets and transits around hypervelocity stars. Monthly Notices of the Royal Astronomical Society, 2012, 423, 948-954.	4.4	42
331	Pair-instability supernovae via collision runaway in young dense star clusters. Monthly Notices of the Royal Astronomical Society, 2012, 423, 2203-2208.	4.4	38
332	Subhaloes in self-interacting galactic dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2012, 423, 3740-3752.	4.4	431
333	Cosmic X-ray and gamma-ray background from dark matter annihilation. Physical Review D, 2011, 83, .	4.7	28
334	Cores in Dwarf Galaxies from Dark Matter with a Yukawa Potential. Physical Review Letters, 2011, 106, 171302.	7.8	280
335	CONSTRAINING THE STRUCTURE OF SAGITTARIUS A*'s ACCRETION FLOW WITH MILLIMETER VERY LONG BASELINE INTERFEROMETRY CLOSURE PHASES. Astrophysical Journal, 2011, 738, 38.	4.5	37
336	OBSERVATIONAL SELECTION EFFECTS AND THE $\langle i \rangle$ M $\langle i \rangle$ ·Ïf RELATION. Astrophysical Journal, 2011, 738, 17.	4.5	28
337	EVIDENCE AGAINST DARK MATTER HALOS SURROUNDING THE GLOBULAR CLUSTERS MGC1 AND NGC 2419. Astrophysical Journal, 2011, 741, 72.	4.5	78
338	EVIDENCE FOR LOW BLACK HOLE SPIN AND PHYSICALLY MOTIVATED ACCRETION MODELS FROM MILLIMETER-VLBI OBSERVATIONS OF SAGITTARIUS A*. Astrophysical Journal, 2011, 735, 110.	4.5	137
339	EFFECT OF STREAMING MOTION OF BARYONS RELATIVE TO DARK MATTER ON THE FORMATION OF THE FIRST STARS. Astrophysical Journal Letters, 2011, 730, L1.	8.3	120
340	CONSTRAINING THE MINIMUM MASS OF HIGH-REDSHIFT GALAXIES AND THEIR CONTRIBUTION TO THE IONIZATION STATE OF THE INTERGALACTIC MEDIUM. Astrophysical Journal, 2011, 729, 99.	4.5	62
341	ON THE GeV AND TeV DETECTIONS OF THE STARBURST GALAXIES M82 AND NGC 253. Astrophysical Journal, 2011, 734, 107.	4.5	147
342	LOCALIZING SAGITTARIUS A* AND M87 ON MICROARCSECOND SCALES WITH MILLIMETER VERY LONG BASELINE INTERFEROMETRY. Astrophysical Journal, 2011, 735, 57.	4.5	38

#	Article	IF	CITATIONS
343	THE SHOCKING TRUTH: THE SMALL CONTRIBUTION TO HYDROGEN REIONIZATION FROM GRAVITATIONAL INFALL. Astrophysical Journal, 2011, 743, 173.	4.5	3
344	Prompt tidal disruption of stars as an electromagnetic signature of supermassive black hole coalescence. Monthly Notices of the Royal Astronomical Society, 2011, 412, 75-80.	4.4	60
345	Recoiling black holes in merging galaxies: relationship to active galactic nucleus lifetimes, starbursts and the MBH- If^* relation. Monthly Notices of the Royal Astronomical Society, 2011, 412, 2154-2182.	4.4	110
346	Rotation speed of the first stars. Monthly Notices of the Royal Astronomical Society, 2011, 413, 543-553.	4.4	102
347	Supernova shock breakout through a wind. Monthly Notices of the Royal Astronomical Society, 2011, 414, 1715-1720.	4.4	71
348	Scale-dependent bias of galaxies from baryonic acoustic oscillations. Monthly Notices of the Royal Astronomical Society, 2011, 415, 3113-3118.	4.4	24
349	Pulsar-black hole binaries in the Galactic Centre. Monthly Notices of the Royal Astronomical Society, 2011, 415, 3951-3961.	4.4	53
350	Evidence for a possible black hole remnant in the Type IIL Supernova 1979C. New Astronomy, 2011, 16, 187-190.	1.8	23
351	Cosmology with hypervelocity stars. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 023-023.	5.4	14
352	Measuring the redshift of reionization with a modest array of low-frequency dipoles. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 038-038.	5.4	17
353	Observable signatures of extreme mass-ratio inspiral black hole binaries embedded in thin accretion disks. Physical Review D, 2011, 84, .	4.7	129
354	Imprint of Accretion Disk-Induced Migration on Gravitational Waves from Extreme Mass Ratio Inspirals. Physical Review Letters, 2011, 107, 171103.	7.8	83
355	Constraining the Stellar Mass Function in the Galactic Center via Mass Loss from Stellar Collisions. Advances in Astronomy, 2011, 2011, 1-19.	1.1	3
356	Birth of a relativistic outflow in the unusual Î ³ -ray transient Swift J164449.3+573451. Nature, 2011, 476, 425-428.	27.8	326
357	THE REIONIZATION OF COSMIC HYDROGEN BY THE FIRST GALAXIES. , 2011, , 41-88.		0
358	A RUNAWAY BLACK HOLE IN COSMOS: GRAVITATIONAL WAVE OR SLINGSHOT RECOIL?. Astrophysical Journal, 2010, 717, 209-222.	4.5	101
359	IDENTIFYING SUPERMASSIVE BLACK HOLE BINARIES WITH BROAD EMISSION LINE DIAGNOSIS. Astrophysical Journal, 2010, 725, 249-260.	4.5	105
360	DYNAMICS AND MAGNETIZATION IN GALAXY CLUSTER CORES TRACED BY X-RAY COLD FRONTS. Astrophysical Journal Letters, 2010, 719, L74-L78.	8.3	42

#	Article	IF	CITATIONS
361	Galaxy statistics in pencil-beam surveys at high redshifts. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	4.4	7
362	Hydrogen was not ionized abruptly. Nature, 2010, 468, 772-773.	27.8	18
363	The right kind of risk. Nature, 2010, 467, 358-358.	27.8	4
364	USING RADIO HALOS AND MINIHALOS TO MEASURE THE DISTRIBUTIONS OF MAGNETIC FIELDS AND COSMIC RAYS IN GALAXY CLUSTERS. Astrophysical Journal, 2010, 722, 737-749.	4.5	83
365	Constraining the unexplored period between the dark ages and reionization with observations of the global 21Âcm signal. Physical Review D, 2010, 82, .	4.7	131
366	Electromagnetic signature of supermassive black hole binaries that enter their gravitational-wave induced inspiral. Physical Review D, 2010, 81, .	4.7	20
367	How Did the First Stars and Galaxies Form?. , 2010, , .		100
368	SIGNATURES OF RELATIVISTIC HELICAL MOTION IN THE ROTATION MEASURES OF ACTIVE GALACTIC NUCLEUS JETS. Astrophysical Journal, 2009, 703, L104-L108.	4.5	34
369	PROBING THE EPOCH OF REIONIZATION WITH THE Lyα FOREST AT <i>z</i> â^1⁄4 4-5. Astrophysical Journal, 2009, 706, L164-L167.	4.5	35
370	DETECTING FLARING STRUCTURES IN SAGITTARIUS A* WITH HIGH-FREQUENCY VLBI. Astrophysical Journal, 2009, 695, 59-74.	4.5	130
371	DETECTING CHANGING POLARIZATION STRUCTURES IN SAGITTARIUS A* WITH HIGH FREQUENCY VLBI. Astrophysical Journal, 2009, 706, 1353-1363.	4.5	35
372	IMAGING THE BLACK HOLE SILHOUETTE OF M87: IMPLICATIONS FOR JET FORMATION AND BLACK HOLE SPIN. Astrophysical Journal, 2009, 697, 1164-1179.	4.5	120
373	WILL THE LARGE SYNOPTIC SURVEY TELESCOPE DETECT EXTRA-SOLAR PLANETESIMALS ENTERING THE SOLAR SYSTEM?. Astrophysical Journal, 2009, 704, 733-742.	4.5	93
374	USING MILLIMETER VLBI TO CONSTRAIN RIAF MODELS OF SAGITTARIUS A*. Astrophysical Journal, 2009, 692, L14-L18.	4.5	31
375	ESTIMATING THE PARAMETERS OF SAGITTARIUS A*'s ACCRETION FLOW VIA MILLIMETER VLBI. Astrophysical Journal, 2009, 697, 45-54.	4.5	104
376	Cosmological constraints from 21cm surveys after reionization. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 030-030.	5.4	41
377	Acceleration of galactic supershells by Lyα radiation. Monthly Notices of the Royal Astronomical Society, 2009, 396, 377-384.	4.4	21
378	Evidence for merger-driven activity in the clustering of high-redshift quasars. Monthly Notices of the Royal Astronomical Society, 2009, 395, 1607-1619.	4.4	18

#	Article	IF	CITATIONS
379	Gravitational waves from scattering of stellar-mass black holes in galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2009, 395, 2127-2146.	4.4	389
380	The 21-cm power spectrum after reionization. Monthly Notices of the Royal Astronomical Society, 2009, 397, 1926-1934.	4.4	48
381	Upper limit on dimming of cosmological sources by intergalactic grey dust from the soft X-ray background. Monthly Notices of the Royal Astronomical Society, 2009, 397, 1976-1981.	4.4	8
382	Lyïį½ïį½ blobs as an observational signature of cold accretion streams into galaxies. Monthly Notices of the Royal Astronomical Society, 2009, 400, 1109-1120.	4.4	156
383	Probing the epoch of reionization with Milky Way satellites. Monthly Notices of the Royal Astronomical Society, 2009, 400, 1593-1602.	4.4	56
384	Star clusters around recoiled black holes in the Milky Way halo. Monthly Notices of the Royal Astronomical Society, 2009, 395, 781-786.	4.4	39
385	Portrait of a Black Hole. Scientific American, 2009, 301, 42-49.	1.0	4
386	Imprint of distortions in the Oort Cloud on the CMB anisotropies. New Astronomy, 2009, 14, 166-179.	1.8	6
387	Long-term evolution in transit duration of extrasolar planets from magnetic activity in their parent stars. New Astronomy, 2009, 14, 363-364.	1.8	4
388	THE EVENT HORIZON OF SAGITTARIUS A*. Astrophysical Journal, 2009, 701, 1357-1366.	4.5	124
389	The Frontier of Reionization: Theory and Forthcoming Observations. Thirty Years of Astronomical Discovery With UKIRT, 2009, , 481-509.	0.3	0
390	Requirements for cosmological 21-cm masers. New Astronomy, 2008, 13, 395-404.	1.8	3
391	Production of hypervelocity stars through encounters with stellar-mass black holes in the Galactic Centre. Monthly Notices of the Royal Astronomical Society, 2008, 383, 86-92.	4.4	59
392	Fluctuations in 21-cm emission after reionization. Monthly Notices of the Royal Astronomical Society, 2008, 383, 606-614.	4.4	68
393	The difference PDF of 21-cm fluctuations: a powerful statistical tool for probing cosmic reionization. Monthly Notices of the Royal Astronomical Society, 2008, 384, 1069-1079.	4.4	31
394	Verifying the identity of high-redshift massive galaxies through the clustering of lower mass galaxies around them. Monthly Notices of the Royal Astronomical Society, 2008, 385, 2175-2180.	4.4	17
395	The collision between the Milky Way and Andromeda. Monthly Notices of the Royal Astronomical Society, 2008, 386, 461-474.	4.4	78
396	The polarization of scattered Lyα radiation around high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2008, 386, 492-504.	4.4	61

#	Article	IF	CITATIONS
397	Hypervelocity stars from the Andromeda galaxy. Monthly Notices of the Royal Astronomical Society, 2008, 386, 1179-1191.	4.4	37
398	Dynamical constraints on the Local Group from the CMB and 2MRS dipoles. Monthly Notices of the Royal Astronomical Society, 2008, 386, 2221-2226.	4.4	26
399	Light-cone distortion of the clustering and abundance of massive galaxies at high redshifts. Monthly Notices of the Royal Astronomical Society, 2008, 386, 2323-2329.	4.4	11
400	Effects of gravitational-wave recoil on the dynamics and growth of supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2008, , .	4.4	51
401	Lyα-driven outflows around star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2008, 391, 457-466.	4.4	41
402	The density contrast of the Shapley supercluster. Monthly Notices of the Royal Astronomical Society, 2008, 391, 1341-1349.	4.4	18
403	Possibility of Precise Measurement of the Cosmological Power Spectrum with a Dedicated Survey of 21Âcm Emission after Reionization. Physical Review Letters, 2008, 100, 161301.	7.8	139
404	21 cm absorption by compact hydrogen discs around black holes in radio-loud nuclei of galaxies. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 008.	5.4	2
405	Brightening of an Accretion Disk due to Viscous Dissipation of Gravitational Waves during the Coalescence of Supermassive Black Holes. Physical Review Letters, 2008, 101, 041101.	7.8	51
406	Imprint of Inhomogeneous Hydrogen Reionization on the Temperature Distribution of the Intergalactic Medium. Astrophysical Journal, 2008, 689, L81-L84.	4.5	113
407	First Light. , 2008, , 1-159.		3
408	Limits on the Position Wander of Sgr A*. Astrophysical Journal, 2008, 682, 1041-1046.	4.5	20
409	Properties of the radio-emitting gas around Sgr A*. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 011-011.	5.4	21
410	Thermal evaporation of gas from x-ray clusters. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 001-001.	5.4	8
411	The physics and early history of the intergalactic medium. Reports on Progress in Physics, 2007, 70, 627-657.	20.1	86
412	Observable Signatures of a Black Hole Ejected by Gravitational-Radiation Recoil in a Galaxy Merger. Physical Review Letters, 2007, 99, 041103.	7.8	118
413	GRB Cosmology: Probing the Early Universe. , 2007, , .		2
414	Distortion of gravitational-wave packets due to their self-gravity. Physical Review D, 2007, 76, .	4.7	8

#	Article	IF	CITATIONS
415	Eavesdropping on radio broadcasts from galactic civilizations with upcoming observatories for redshifted 21 cm radiation. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 020-020.	5.4	28
416	Smooth boundaries to cosmological H II regions from galaxy clustering. Monthly Notices of the Royal Astronomical Society, 2007, 374, 960-964.	4.4	12
417	The correlation between the distribution of galaxies and 21-cm emission at high redshifts. Monthly Notices of the Royal Astronomical Society, 2007, 375, 1034-1042.	4.4	42
418	Hypervelocity collisions of binary stars at the Galactic Centre. Monthly Notices of the Royal Astronomical Society, 2007, 376, 492-496.	4.4	40
419	Dynamics of triple black hole systems in hierarchically merging massive galaxies. Monthly Notices of the Royal Astronomical Society, 2007, 377, 957-976.	4.4	127
420	The imprint of cosmic reionization on galaxy clustering. Monthly Notices of the Royal Astronomical Society, 2007, 382, 921-936.	4.4	12
421	Cosmic microwave background anisotropies from outflows in Lyman break galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2007, 374, L24-L28.	3.3	7
422	An Empirically Calibrated Model for Interpreting the Evolution of Galaxies during the Reionization Era. Astrophysical Journal, 2007, 668, 627-642.	4.5	41
423	Frequency-dependent Shift in the Image Centroid of the Black Hole at the Galactic Center as a Test of General Relativity. Astrophysical Journal, 2006, 636, L109-L112.	4.5	97
424	Highâ€Redshift Gammaâ€Ray Bursts from Population III Progenitors. Astrophysical Journal, 2006, 642, 382-388.	4.5	189
425	Cosmic Variance in the Transparency of the Intergalactic Medium after Reionization. Astrophysical Journal, 2006, 646, 696-702.	4.5	18
426	Three-Body Kick to a Bright Quasar Out of Its Galaxy during a Merger. Astrophysical Journal, 2006, 638, L75-L78.	4.5	35
427	Imprint of Inhomogeneous Reionization on the Power Spectrum of Galaxy Surveys at High Redshifts. Astrophysical Journal, 2006, 640, 1-7.	4.5	21
428	Light-cone anisotropy in 21-cm fluctuations during the epoch of reionization. Monthly Notices of the Royal Astronomical Society: Letters, 2006, 372, L43-L47.	3.3	36
429	The fate of former companions to hypervelocity stars originating at the Galactic Centre. Monthly Notices of the Royal Astronomical Society, 2006, 368, 221-225.	4.4	69
430	Imaging optically-thin hotspots near the black hole horizon of Sgr A* at radio and near-infrared wavelengths. Monthly Notices of the Royal Astronomical Society, 2006, 367, 905-916.	4.4	184
431	Detecting reionization in the star formation histories of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2006, 371, 395-400.	4.4	16
432	The Dark Ages of the Universe. Scientific American, 2006, 295, 46-53.	1.0	25

#	Article	IF	CITATIONS
433	Suppression of dwarf galaxy formation by cosmic reionization. Nature, 2006, 441, 322-324.	27.8	46
434	An observational test for the anthropic origin of the cosmological constant. Journal of Cosmology and Astroparticle Physics, 2006, 2006, 009-009.	5.4	17
435	GRB Cosmology and the First Stars. AIP Conference Proceedings, 2006, , .	0.4	2
436	Calibrating the Galaxy Halo–Black Hole Relation Based on the Clustering of Quasars. Astrophysical Journal, 2005, 621, 95-103.	4.5	29
437	Implications of the Measured Image Size for the Radio Afterglow of GRB 030329. Astrophysical Journal, 2005, 618, 413-425.	4.5	36
438	Was the Universe Reionized at Redshift 10?. Astrophysical Journal, 2005, 620, 553-558.	4.5	28
439	A Dynamical Method for Measuring the Masses of Stars with Transiting Planets. Astrophysical Journal, 2005, 623, L45-L48.	4.5	32
440	Nonthermal THz to TeV Emission from Stellar Wind Shocks in the Galactic Center. Astrophysical Journal, 2005, 635, L45-L48.	4.5	23
441	The Remnants of Intergalactic Supernovae. Astrophysical Journal, 2005, 632, 847-853.	4.5	13
442	Constraints on the Process that Regulates the Growth of Supermassive Black Holes Based on the Intrinsic Scatter in theMbhâ€ifsphRelation. Astrophysical Journal, 2005, 634, 910-920.	4.5	33
443	Undetected Sources Allow Transmission of the Ly $\hat{I}\pm$ Line from Galaxies Prior to Reionization. Astrophysical Journal, 2005, 625, 1-5.	4.5	57
444	Detecting the Earliest Galaxies through Two New Sources of 21 Centimeter Fluctuations. Astrophysical Journal, 2005, 626, 1-11.	4.5	202
445	Prospects for Redshifted 21 cm Observations of Quasar HiiRegions. Astrophysical Journal, 2005, 634, 715-727.	4.5	55
446	Is Double Reionization Physically Plausible?. Astrophysical Journal, 2005, 634, 1-13.	4.5	70
447	A Method for Separating the Physics from the Astrophysics of High-Redshift 21 Centimeter Fluctuations. Astrophysical Journal, 2005, 624, L65-L68.	4.5	207
448	Improved Constraints on the Neutral Intergalactic Hydrogen Surrounding Quasars at Redshiftsz> 6. Astrophysical Journal, 2005, 628, 575-582.	4.5	72
449	Constraints on the Proper Motion of the Andromeda Galaxy Based on the Survival of Its Satellite M33. Astrophysical Journal, 2005, 633, 894-898.	4.5	48
450	Polarization of 21 cm Radiation from the Epoch of Reionization. Astrophysical Journal, 2005, 635, 1-10.	4.5	21

#	Article	IF	CITATIONS
451	Imaging bright-spots in the accretion flow near the black hole horizon of Sgr A. Monthly Notices of the Royal Astronomical Society, 2005, 363, 353-362.	4.4	140
452	Observing the First Stars, One Star at a Time. International Astronomical Union Colloquium, 2005, 192, 543-553.	0.1	0
453	Small-scale power spectrum of cold dark matter. Physical Review D, 2005, 71, .	4.7	206
454	CMBB-mode polarization from Thomson scattering in the local universe. Physical Review D, 2005, 71, .	4.7	3
455	The case for a low extragalactic gamma-ray background. Journal of Cosmology and Astroparticle Physics, 2004, 2004, 006-006.	5.4	60
456	Direct feeding of the black hole at the Galactic Centre with radial gas streams from close-in stellar winds. Monthly Notices of the Royal Astronomical Society, 2004, 350, 725-728.	4.4	41
457	Element segregation in giant galaxies and X-ray clusters. Monthly Notices of the Royal Astronomical Society, 2004, 349, L13-L17.	4.4	31
458	A large neutral fraction of cosmic hydrogen a billion years after the Big Bang. Nature, 2004, 427, 815-817.	27.8	116
459	A characteristic size of â^¼10 Mpc for the ionized bubbles at the end of cosmic reionization. Nature, 2004, 432, 194-196.	27.8	99
460	Accretion onto a primordial protostar. New Astronomy, 2004, 9, 353-364.	1.8	101
461	Future evolution of the intergalactic medium in a universe dominated by a cosmological constant. New Astronomy, 2004, 9, 573-583.	1.8	21
462	Searching for intergalactic shocks with the Square Kilometer Array. New Astronomy Reviews, 2004, 48, 1119-1135.	12.8	20
463	Measuring the Small-Scale Power Spectrum of Cosmic Density Fluctuations through 21Âcm Tomography Prior to the Epoch of Structure Formation. Physical Review Letters, 2004, 92, 211301.	7.8	279
464	A Model for the Flaring Radio Emission in the Double Pulsar System J0737-3039. Astrophysical Journal, 2004, 614, L53-L56.	4.5	17
465	Detection of Gravitational Waves from the Coalescence of Population III Remnants with Advanced LIGO. Astrophysical Journal, 2004, 612, 597-601.	4.5	14
466	Imprint of Intergalactic Shocks on the Radio Sky. Astrophysical Journal, 2004, 617, 281-302.	4.5	75
467	Early Formation and Late Merging of the Giant Galaxies. Astrophysical Journal, 2004, 614, 17-25.	4.5	83
468	Redshifted 21 Centimeter Signatures around the Highest Redshift Quasars. Astrophysical Journal, 2004, 610, 117-127.	4.5	45

#	Article	IF	CITATIONS
469	The Cosmic Microwave Background Quadrupole in a Polarized Light. Astrophysical Journal, 2004, 612, 81-85.	4.5	21
470	Unusually Large Fluctuations in the Statistics of Galaxy Formation at High Redshift. Astrophysical Journal, 2004, 609, 474-481.	4.5	246
471	A Limit from the Xâ€Ray Background on the Contribution of Quasars to Reionization. Astrophysical Journal, 2004, 613, 646-654.	4.5	135
472	The Link between Warm Molecular Disks in Maser Nuclei and Star Formation near the Black Hole at the Galactic Center. Astrophysical Journal, 2004, 604, L45-L48.	4.5	72
473	Large‣cale Structure Shocks at Low and High Redshifts. Astrophysical Journal, 2004, 611, 642-654.	4.5	70
474	Probing the Spacetime around Sagittarius A* with Radio Pulsars. Astrophysical Journal, 2004, 615, 253-258.	4.5	114
475	Probing the Magnetic Field Structure in Gammaâ€Ray Bursts through Dispersive Plasma Effects on the Afterglow Polarization. Astrophysical Journal, 2004, 615, 366-377.	4.5	29
476	Gammaâ€Ray Bursts versus Quasars: Lyα Signatures of Reionization versus Cosmological Infall. Astrophysical Journal, 2004, 601, 64-77.	4.5	83
477	A Method for Mapping the Temperature Profile of Xâ€Ray Clusters through Radio Observations. Astrophysical Journal, 2004, 602, 659-663.	4.5	6
478	Future evolution of nearby large-scale structures in a universe dominated by a cosmological constant. New Astronomy, 2003, 8, 439-448.	1.8	62
479	Spectral signature of cosmological infall of gas around the first quasars. Nature, 2003, 421, 341-343.	27.8	55
480	The formation of the first low-mass stars from gas with low carbon and oxygen abundances. Nature, 2003, 425, 812-814.	27.8	360
481	Lowâ€Frequency Gravitational Waves from Massive Black Hole Binaries: Predictions forLISAand Pulsar Timing Arrays. Astrophysical Journal, 2003, 590, 691-706.	4.5	260
482	Periodic Flux Variability of Stars due to the Reflex Doppler Effect Induced by Planetary Companions. Astrophysical Journal, 2003, 588, L117-L120.	4.5	177
483	Formation of the First Supermassive Black Holes. Astrophysical Journal, 2003, 596, 34-46.	4.5	599
484	Radio Imaging of Gamma-Ray Burst Jets in Nearby Supernovae. Astrophysical Journal, 2003, 593, L81-L84.	4.5	48
485	Cosmological Origin of the Stellar Velocity Dispersions in Massive Earlyâ€Type Galaxies. Astrophysical Journal, 2003, 589, 29-34.	4.5	85
486	Was the Universe Reionized by Massive Metal-free Stars?. Astrophysical Journal, 2003, 588, L69-L72.	4.5	143

#	Article	IF	CITATIONS
487	Stability of an Ultrarelativistic Blast Wave in an External Medium with a Steep Power‣aw Density Profile. Astrophysical Journal, 2003, 594, 924-935.	4.5	2
488	Reionization of Hydrogen and Helium by Early Stars and Quasars. Astrophysical Journal, 2003, 586, 693-708.	4.5	229
489	Gamma Rays from Intergalactic Shocks. Astrophysical Journal, 2003, 585, 128-150.	4.5	138
490	Metal Absorption Lines as Probes of the Intergalactic Medium Prior to the Reionization Epoch. Astrophysical Journal, 2003, 588, 18-34.	4.5	97
491	Effects of Wandering on the Coalescence of Black Hole Binaries in Galactic Centers. Astrophysical Journal, 2003, 592, 32-41.	4.5	43
492	Selfâ€regulated Growth of Supermassive Black Holes in Galaxies as the Origin of the Optical and Xâ€Ray Luminosity Functions of Quasars. Astrophysical Journal, 2003, 595, 614-623.	4.5	366
493	Vacuum Decay Constraints on a Cosmological Scalar Field. Physical Review Letters, 2002, 88, 121302.	7.8	3
494	Long-term future of extragalactic astronomy. Physical Review D, 2002, 65, .	4.7	33
495	Brownian Motion in Gravitationally Interacting Systems. Physical Review Letters, 2002, 88, 121103.	7.8	26
496	Emission of Positron Annihilation Line Radiation by Clusters of Galaxies. Astrophysical Journal, 2002, 572, 796-809.	4.5	12
497	The Imprint of Lithium Recombination on the Microwave Background Anisotropies. Astrophysical Journal, 2002, 564, 52-59.	4.5	17
498	A Physical Model for the Luminosity Function of Highâ€Redshift Quasars. Astrophysical Journal, 2002, 581, 886-894.	4.5	129
499	Dynamics of a Massive Black Hole at the Center of a Dense Stellar System. Astrophysical Journal, 2002, 572, 371-381.	4.5	71
500	Constraining the Collisional Nature of the Dark Matter through Observations of Gravitational Wakes. Astrophysical Journal, 2002, 565, 854-866.	4.5	27
501	Cosmological Recombination of Lithium and Its Effect on the Microwave Background Anisotropies. Astrophysical Journal, 2002, 580, 29-35.	4.5	20
502	The 21 Centimeter Forest: Radio Absorption Spectra as Probes of Minihalos before Reionization. Astrophysical Journal, 2002, 579, 1-9.	4.5	109
503	Are X-ray clusters cooled by heat conduction to the surrounding intergalactic medium?. New Astronomy, 2002, 7, 279-282.	1.8	22
504	Magnification of light from many distant quasars by gravitational lenses. Nature, 2002, 417, 923-925.	27.8	63

#	Article	IF	CITATIONS
505	Constraining Cosmological Parameters Based on Relative Galaxy Ages. Astrophysical Journal, 2002, 573, 37-42.	4.5	607
506	Stability of the Forward/Reverseâ€Shock System Formed by the Impact of a Relativistic Fireball on an Ambient Medium. Astrophysical Journal, 2002, 568, 830-844.	4.5	8
507	Identifying Gamma-Ray Burst Remnants through Positron Annihilation Radiation. Astrophysical Journal, 2002, 569, L91-L94.	4.5	19
508	The Expected Redshift Distribution of Gammaâ€Ray Bursts. Astrophysical Journal, 2002, 575, 111-116.	4.5	204
509	Measuring the Size of Quasar Broadâ€Line Clouds through Timeâ€Delay Lightâ€Curve Anomalies of Gravitational Lenses. Astrophysical Journal, 2002, 577, 615-625.	4.5	19
510	Gravitational Lensing of the Sloan Digital Sky Survey Highâ€Redshift Quasars. Astrophysical Journal, 2002, 577, 57-68.	4.5	55
511	Effective Screening Due to Minihalos during the Epoch of Reionization. Astrophysical Journal, 2002, 578, 1-11.	4.5	58
512	Constraints on the Collisional Nature of the Dark Matter from Gravitational Lensing in the Cluster A2218. Astrophysical Journal, 2002, 580, L17-L20.	4.5	53
513	The Reionization of the Universe by the First Stars and Quasars. Annual Review of Astronomy and Astrophysics, 2001, 39, 19-66.	24.3	294
514	Generic Spectrum and Ionization Efficiency of a Heavy Initial Mass Function for the First Stars. Astrophysical Journal, 2001, 552, 464-472.	4.5	356
515	What Is the Highest Plausible Redshift of Luminous Quasars?. Astrophysical Journal, 2001, 552, 459-463.	4.5	219
516	Probing the Universe after Cosmological Recombination through the Effect of Neutral Lithium on the Microwave Background Anisotropies. Astrophysical Journal, 2001, 555, L1-L5.	4.5	24
517	Chromatic Signatures in the Microlensing of Gamma-Ray Burst Afterglows. Astrophysical Journal, 2001, 551, L63-L66.	4.5	31
518	Enhanced Microlensing by Stars around the Black Hole in the Galactic Center. Astrophysical Journal, 2001, 551, 223-230.	4.5	24
519	In the beginning: the first sources of light and the reionization of the universe. Physics Reports, 2001, 349, 125-238.	25.6	1,032
520	TeV Neutrinos and GeV Photons from Shock Breakout in Supernovae. Physical Review Letters, 2001, 87, 071101.	7.8	49
521	Gravitational Microlensing of Gamma-Ray Burst Afterglows by Single and Binary Stars. Astrophysical Journal, 2001, 547, L97-L101.	4.5	17
522	Does the Mass Accretion Rate Depend on the Radius of the Accreting Star?. Astrophysical Journal, 2001, 547, L151-L154.	4.5	10

#	Article	IF	CITATIONS
523	Emission from Bow Shocks of Beamed Gammaâ€Ray Bursts. Astrophysical Journal, 2001, 552, 49-56.	4.5	7
524	Intergalactic Magnetic Fields from Quasar Outflows. Astrophysical Journal, 2001, 556, 619-634.	4.5	185
525	Resolving the Image of Gammaâ€Ray Burst Afterglows with Gravitational Microlensing. Astrophysical Journal, 2001, 558, 643-656.	4.5	9
526	Microlensing and the Surface Brightness Profile of the Afterglow Image of Gammaâ€Ray Burst 000301C. Astrophysical Journal, 2001, 561, 178-182.	4.5	23
527	Identifying the Reionization Redshift from the Cosmic Star Formation Rate. Astrophysical Journal, 2000, 539, 20-25.	4.5	68
528	Probing Red Giant Atmospheres with Gravitational Microlensing. Astrophysical Journal, 2000, 543, 406-416.	4.5	48
529	Resolving Gamma-Ray Burst 000301C with a Gravitational Microlens. Astrophysical Journal, 2000, 544, L11-L15.	4.5	79
530	Identifying Gammaâ€Ray Burst Remnants in Nearby Galaxies. Astrophysical Journal, 2000, 533, 658-669.	4.5	30
531	Cosmic Î ³ -ray background from structure formation in the intergalactic medium. Nature, 2000, 405, 156-158.	27.8	176
532	Highâ€Redshift Galaxies: Their Predicted Size and Surface Brightness Distributions and Their Gravitational Lensing Probability. Astrophysical Journal, 2000, 531, 613-623.	4.5	55
533	Variability of Gammaâ€Ray Burst Afterglows due to Interstellar Turbulence. Astrophysical Journal, 2000, 535, 788-797.	4.5	61
534	Expected Number and Flux Distribution of Gammaâ€Ray Burst Afterglows with High Redshifts. Astrophysical Journal, 2000, 540, 687-696.	4.5	137
535	Fluctuations in the Radio Background from Intergalactic Synchrotron Emission. Astrophysical Journal, 2000, 545, L11-L14.	4.5	47
536	Escape of Ionizing Radiation from Highâ€Redshift Galaxies. Astrophysical Journal, 2000, 545, 86-99.	4.5	104
537	Empirical constraints on the first stars and quasars. , 1999, , .		3
538	Generation of Magnetic Fields in the Relativistic Shock of Gammaâ€Ray Burst Sources. Astrophysical Journal, 1999, 526, 697-706.	4.5	718
539	Scattered Lyα Radiation around Sources before Cosmological Reionization. Astrophysical Journal, 1999, 524, 527-535.	4.5	161
540	A Subrelativistic Shock Model for the Radio Emission of SN 1998bw. Astrophysical Journal, 1999, 515, 721-725.	4.5	34

#	Article	IF	CITATIONS
541	Constraints from the Hubble Deep Field on Highâ€Redshift Quasar Models. Astrophysical Journal, 1999, 514, 535-543.	4.5	36
542	Determining the Redshift of Reionization from the Spectra of Highâ€Redshift Sources. Astrophysical Journal, 1999, 519, 479-485.	4.5	42
543	The Photoevaporation of Dwarf Galaxies during Reionization. Astrophysical Journal, 1999, 523, 54-65.	4.5	241
544	Constraints on Offâ€Axis Xâ€Ray Emission from Beamed Gammaâ€Ray Bursts. Astrophysical Journal, 1999, 523, 187-191.	4.5	60
545	Polarization of the L[CLC]y[/CLC]α Halos around Sources before Cosmological Reionization. Astrophysical Journal, 1999, 520, L79-L81.	4.5	29
546	X-Ray Emission from the First Quasars. Astrophysical Journal, 1999, 521, L9-L12.	4.5	35
547	Direct Measurement of Cosmological Parameters from the Cosmic Deceleration of Extragalactic Objects. Astrophysical Journal, 1998, 499, L111-L114.	4.5	202
548	Microlensing of Gammaâ€Ray Burst Afterglows. Astrophysical Journal, 1998, 495, 597-603.	4.5	63
549	X-Ray Absorption by the Hot Intergalactic Medium. Astrophysical Journal, 1998, 503, L135-L138.	4.5	82
550	Constraining the Beaming of Gamma-Ray Bursts with Radio Surveys. Astrophysical Journal, 1998, 509, L85-L88.	4.5	41
551	Gammaâ€Ray Bursts from Baryon Decay in Neutron Stars. Astrophysical Journal, 1998, 509, 537-543.	4.5	4
552	Probing the Mass Fraction of MACHOs in Extragalactic Halos. Astrophysical Journal, 1998, 493, 523-528.	4.5	4
553	Identifying the Environment and Redshift of Gammaâ€Ray Burst Afterglows from the Time Dependence of Their Absorption Spectra. Astrophysical Journal, 1998, 501, 467-472.	4.5	93
554	Effects of Disks on Gravitational Lensing by Spiral Galaxies. Astrophysical Journal, 1998, 503, 48-60.	4.5	22
555	Observational Signatures of the First Quasars. Astrophysical Journal, 1998, 503, 505-517.	4.5	232
556	The Expected Rate of Gammaâ€Ray Burst Afterglows in Supernova Searches. Astrophysical Journal, 1998, 508, 760-766.	4.5	14
557	Emission Spectra from Internal Shocks in Gamma-Ray Burst Sources. Astrophysical Journal, 1998, 494, L167-L171.	4.5	81
558	Are H [CSC]i[/CSC] Supershells the Remnants of Gamma-Ray Bursts?. Astrophysical Journal, 1998, 503, L35-L37.	4.5	65

#	Article	IF	CITATIONS
559	Measuring the Virial Temperature of Galactic Halos through Electron Scatteringof Quasar Emission Lines. Astrophysical Journal, 1998, 508, L115-L118.	4.5	2
560	Getting around cosmic variance. Physical Review D, 1997, 56, 4511-4513.	4.7	94
561	Signatures of Stellar Reionization of the Universe. Astrophysical Journal, 1997, 483, 21-37.	4.5	207
562	Do the Electrons and Ions in Xâ€Ray Clusters Share the Same Temperature?. Astrophysical Journal, 1997, 491, 459-466.	4.5	83
563	Microlensing of an Elliptical Source by a Point Mass. Astrophysical Journal, 1997, 490, 38-50.	4.5	48
564	Dynamical Mass Estimates of Large‣cale Filaments in Redshift Surveys. Astrophysical Journal, 1997, 475, 421-428.	4.5	24
565	Destruction of Molecular Hydrogen during Cosmological Reionization. Astrophysical Journal, 1997, 476, 458-463.	4.5	312
566	Gravitational Lensing of the Xâ€Ray Background by Clusters of Galaxies. Astrophysical Journal, 1997, 478, 476-491.	4.5	23
567	Effects of Dust on Gravitational Lensing by Spiral Galaxies. Astrophysical Journal, 1997, 488, 550-556.	4.5	16
568	Microlensing of Quasars by Stars in Their Damped Lyα Absorbers. Astrophysical Journal, 1997, 489, 489-500.	4.5	4
569	Optical Appearance of the Debris of a Star Disrupted by a Massive Black Hole. Astrophysical Journal, 1997, 489, 573-578.	4.5	177
570	Signatures of Intergalactic Dust from the First Supernovae. Astrophysical Journal, 1997, 490, 571-576.	4.5	40
571	Effect of Gravitational Lensing on Measurements of the Sunyaev-Zeldovich Effect. Astrophysical Journal, 1997, 476, L59-L62.	4.5	13
572	Influence of Gravitational Lensing on Estimates of $\hat{I}^{(\!\!0\!)}$ in Neutral Hydrogen. Symposium - International Astronomical Union, 1996, 173, 97-98.	0.1	0
573	Gravitational Lensing of Quasi-stellar Objects by Their Damped LY alpha Absorbers. Astrophysical Journal, 1996, 457, 529.	4.5	29
574	Cosmological Formation of Low-Mass Objects. Astrophysical Journal, 1996, 464, 523.	4.5	285
575	Faraday Rotation of Microwave Background Polarization by a Primordial Magnetic Field. Astrophysical Journal, 1996, 469, 1.	4.5	213
576	Microwave Background Anisotropies Due to the Kinematic Sunyaev-Zeldovich Effect of the Lyα Forest. Astrophysical Journal, 1996, 471, L1-L4.	4.5	18

#	Article	IF	CITATIONS
577	Cosmological Origin of Quasars. Annals of the New York Academy of Sciences, 1995, 759, 558-562.	3.8	0
578	An analytical model for the triaxial collapse of cosmological perturbations. Astrophysical Journal, 1995, 439, 520.	4.5	120
579	Origin of quasar progenitors from the collapse of low-spin cosmological perturbations. Astrophysical Journal, 1995, 443, 11.	4.5	139
580	On the Interaction of Convection and Rotation in Stars. Astrophysical Journal, 1995, 453, 480.	4.5	21
581	Axion bursts from supernovae at cosmological distances. AIP Conference Proceedings, 1994, , .	0.4	0
582	Collapse of primordial gas clouds and the formation of quasar black holes. Astrophysical Journal, 1994, 432, 52.	4.5	261
583	AreÎ ³ -ray bursts at cosmological distances optically thin?. Physical Review D, 1993, 48, R3419-R3421.	4.7	12
584	Constraints on the cosmic rays in the Small Magellanic Cloud. Physical Review Letters, 1993, 71, 3394-3394.	7.8	2
585	Cosmological formation of quasar black holes. Astrophysical Journal, 1993, 403, 542.	4.5	39
586	Finding protoquasars at high redshifts. Astrophysical Journal, 1993, 404, L37.	4.5	24
587	Dynamics and gravitational interaction of waves in nonuniform media. Physical Review D, 1992, 45, 525-531.	4.7	32
588	Accretion flows near black holes mediated by radiative viscosity. Astrophysical Journal, 1992, 384, 115.	4.5	23
589	A lower limit of the cosmic mean density from the ages of clusters of galaxies. Astrophysical Journal, 1992, 393, 477.	4.5	139
590	Discovering planetary systems through gravitational microlenses. Astrophysical Journal, 1992, 396, 104.	4.5	444
591	Unsaturated Comptonization of isotropic photon spectra by relativistic electrons. Astrophysical Journal, 1991, 374, 44.	4.5	12
592	Spectroscopic diagnostics of the characteristics of an electrothermal gun free jet plasma. Journal of Quantitative Spectroscopy and Radiative Transfer, 1990, 44, 59.	2.3	0
593	Bound-neutrino sphere and spontaneous neutrino-pair creation in cold neutron stars. Physical Review Letters, 1990, 64, 115-118.	7.8	27
594	Element diffusion in stellar interiors. Astrophysical Journal, 1990, 360, 267.	4.5	48

#	Article	IF	CITATIONS
595	A possible origin of galactic magnetic fields. Astrophysical Journal, 1990, 364, 451.	4.5	60
596	Constraints on a hot intergalactic medium from the X-ray and submillimeter backgrounds. Astrophysical Journal, 1990, 349, L9.	4.5	0
597	Relativistic spin relaxation in stochastic electromagnetic fields. Physical Review D, 1989, 40, 3520-3524.	4.7	6
598	Collisional incoherence in neutrino line emission. Physical Review D, 1989, 39, 1009-1012.	4.7	11
599	Inductive programmed generator for electrothermal guns. IEEE Transactions on Magnetics, 1989, 25, 280-283.	2.1	8
600	A theoretical model for the physical processes in the confined high pressure discharges of electrothermal launchers. IEEE Transactions on Magnetics, 1989, 25, 342-346.	2.1	95
601	Confined high pressure discharge experiments. IEEE Transactions on Magnetics, 1989, 25, 538-540.	2.1	2
602	The magnitude of He-3 diffusion in the sun. Astrophysical Journal, 1989, 341, 1108.	4.5	5
603	Could unstable relic particles distort the microwave background radiation?. Astrophysical Journal, 1989, 338, L41.	4.5	8
604	Magnetic field generation during the cosmological QCD phase transition. Astrophysical Journal, 1989, 344, L49.	4.5	190
605	The nonlinear dynamics of dense electron beams in the autoresonance laser accelerator. Physics Letters, Section A: General, Atomic and Solid State Physics, 1988, 129, 329-332.	2.1	8
606	Electromagnetic characteristics of the dynamics of a self-gravitating quasineutral plasma. Physical Review D, 1988, 37, 3484-3494.	4.7	2
607	A Simple Model for Neutrino Cooling of the Large Magellanic Cloud Supernova. Science, 1987, 237, 1471-1473.	12.6	36
608	Autoresonance laser acceleration of guided â€~â€~quasineutral'' electron-positron beams. Physical Review A, 1987, 35, 1692-1696.	2.5	21
609	Acceleration of Electron-Positron Plasmas to High Energies. IEEE Transactions on Plasma Science, 1987, 15, 238-242.	1.3	1
610	Autoresonance laser accelerator. Physical Review A, 1986, 33, 1828-1835.	2.5	54
611	Free-Electron Laser and Laser Electron Acceleration Based on the Megagauss Magnetic Fields in Laser-Produced Plasmas. Physical Review Letters, 1986, 56, 2252-2255.	7.8	25
612	A gamma ray laser based on induced annihilation of electron-positron pairs. Laser and Particle Beams, 1986, 4, 577-587.	1.0	12

#	Article	IF	CITATIONS
613	Deposition of energy outside of the focal spot as observed on the rear surface of laser irradiated targets. Physics Letters, Section A: General, Atomic and Solid State Physics, 1985, 112, 223-226.	2.1	0
614	An analytical model for creation and decay of strong shock waves caused by a trapezoidal laser pulse. Physics of Fluids, 1985, 28, 1196.	1.4	16
615	Point explosion simulation by fast spark discharges. Journal of Applied Physics, 1985, 57, 2501-2506.	2.5	12
616	The correlation between star formation and 21-cm emission during the reionization epoch. Monthly Notices of the Royal Astronomical Society, 0, 380, 1087-1097.	4.4	5
617	Constraining reionization using 21-cm observations in combination with CMB and Lyl± forest data. Monthly Notices of the Royal Astronomical Society, 0, 408, 57-70.	4.4	39
618	Gamma-ray burst cosmology. , 0, , 291-310.		1
619	Signatures of supermassive black hole binaries on maser systems. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	Ο