Qifeng Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9254709/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nature Communications, 2015, 6, 7170.	5.8	707
2	Cellulose Nanofibril/Reduced Graphene Oxide/Carbon Nanotube Hybrid Aerogels for Highly Flexible and All-Solid-State Supercapacitors. ACS Applied Materials & amp; Interfaces, 2015, 7, 3263-3271.	4.0	356
3	Green synthesis of polyvinyl alcohol (PVA)–cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. Journal of Materials Chemistry A, 2014, 2, 3110-3118.	5.2	340
4	A cyclic phosphate-based battery electrolyte for high voltage and safe operation. Nature Energy, 2020, 5, 291-298.	19.8	250
5	Highly Porous Polymer Aerogel Filmâ€Based Triboelectric Nanogenerators. Advanced Functional Materials, 2018, 28, 1706365.	7.8	226
6	High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing. Nano Energy, 2018, 48, 327-336.	8.2	205
7	Polyvinyl Alcohol-Cellulose Nanofibrils-Graphene Oxide Hybrid Organic Aerogels. ACS Applied Materials & Interfaces, 2013, 5, 5969-5975.	4.0	163
8	Neuroendocrine Tumorâ€Targeted Upconversion Nanoparticleâ€Based Micelles for Simultaneous NIRâ€Controlled Combination Chemotherapy and Photodynamic Therapy, and Fluorescence Imaging. Advanced Functional Materials, 2017, 27, 1604671.	7.8	138
9	A freestanding cellulose nanofibril–reduced graphene oxide–molybdenum oxynitride aerogel film electrode for all-solid-state supercapacitors with ultrahigh energy density. Journal of Materials Chemistry A, 2017, 5, 12528-12541.	5.2	133
10	High-performance flexible piezoelectric nanogenerators consisting of porous cellulose nanofibril (CNF)/poly(dimethylsiloxane) (PDMS) aerogel films. Nano Energy, 2016, 26, 504-512.	8.2	131
11	Multi-responsive self-healing metallo-supramolecular gels based on "click―ligand. Journal of Materials Chemistry, 2012, 22, 11515.	6.7	130
12	Image-guided and tumor-targeted drug delivery with radiolabeled unimolecular micelles. Biomaterials, 2013, 34, 8323-8332.	5.7	98
13	Poly(vinyl alcohol)/Cellulose Nanofibril Hybrid Aerogels with an Aligned Microtubular Porous Structure and Their Composites with Polydimethylsiloxane. ACS Applied Materials & Interfaces, 2015, 7, 7436-7444.	4.0	93
14	Mechanically strong fully biobased anisotropic cellulose aerogels. RSC Advances, 2016, 6, 96518-96526.	1.7	92
15	Synthesis of polyvinyl alcohol/cellulose nanofibril hybrid aerogel microspheres and their use as oil/solvent superabsorbents. Carbohydrate Polymers, 2016, 148, 300-308.	5.1	90
16	Sodium―and Potassiumâ€Hydrate Melts Containing Asymmetric Imide Anions for Highâ€Voltage Aqueous Batteries. Angewandte Chemie - International Edition, 2019, 58, 14202-14207.	7.2	81
17	Polyvinyl alcohol (PVA)–cellulose nanofibril (CNF)–multiwalled carbon nanotube (MWCNT) hybrid organic aerogels with superior mechanical properties. RSC Advances, 2013, 3, 20816.	1.7	74
18	Multi-stimuli-responsive self-healing metallo-supramolecular polymer nanocomposites. Journal of Materials Chemistry A, 2016, 4, 3324-3334.	5.2	73

QIFENG ZHENG

#	Article	IF	CITATIONS
19	A composite generator film impregnated with cellulose nanocrystals for enhanced triboelectric performance. Nanoscale, 2017, 9, 1428-1433.	2.8	67
20	A 3D interconnected metal-organic framework-derived solid-state electrolyte for dendrite-free lithium metal battery. Energy Storage Materials, 2022, 47, 262-270.	9.5	66
21	Concentrated Electrolytes Widen the Operating Temperature Range of Lithiumâ€lon Batteries. Advanced Science, 2021, 8, e2101646.	5.6	54
22	A new class of flexible nanogenerators consisting of porous aerogel films driven by mechanoradicals. Nano Energy, 2017, 38, 401-411.	8.2	52
23	Flexible Infrared Responsive Multi-Walled Carbon Nanotube/Form-Stable Phase Change Material Nanocomposites. ACS Applied Materials & Interfaces, 2015, 7, 21602-21609.	4.0	45
24	3D Microstructured Scaffolds to Support Photoreceptor Polarization and Maturation. Advanced Materials, 2018, 30, e1803550.	11.1	45
25	Oxygen-deficient and nitrogen-doped MnO ₂ nanowire-reduced graphene oxide–cellulose nanofibril aerogel electrodes for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 24407-24417.	5.2	43
26	Rational Electrolyte Design to Form Inorganic–Polymeric Interphase on Silicon-Based Anodes. ACS Energy Letters, 2021, 6, 1811-1820.	8.8	39
27	Graphene/Phase Change Material Nanocomposites: Light-Driven, Reversible Electrical Resistivity Regulation via Form-Stable Phase Transitions. ACS Applied Materials & Interfaces, 2015, 7, 2641-2647.	4.0	36
28	Advances in the Surface Engineering of Upconversion Nanocrystals. Science of Advanced Materials, 2012, 4, 1-22.	0.1	36
29	Three-Dimensional (3D) Nanostructured Skeleton Substrate Composed of Hollow Carbon Fiber/Carbon Nanosheet/ZnO for Stable Lithium Anode. ACS Applied Materials & Interfaces, 2021, 13, 3078-3088.	4.0	34
30	Drug-loaded nanoparticles induce gene expression in human pluripotent stem cell derivatives. Nanoscale, 2014, 6, 521-531.	2.8	26
31	Highly stretchable and sensitive piezoresistive carbon nanotube/elastomeric triisocyanate-crosslinked polytetrahydrofuran nanocomposites. Journal of Materials Chemistry C, 2016, 4, 460-467.	2.7	26
32	Sodium―and Potassiumâ€Hydrate Melts Containing Asymmetric Imide Anions for Highâ€Voltage Aqueous Batteries. Angewandte Chemie, 2019, 131, 14340-14345.	1.6	18
33	Crystalline Porous Materials-based Solid-State Electrolytes for Lithium Metal Batteries. EnergyChem, 2022, 4, 100073.	10.1	18
34	Tuning the Metal Ions of Prussian Blue Analogues in Separators to Enable High-Power Lithium Metal Batteries. Nano Letters, 2022, 22, 4861-4869.	4.5	8
35	(Invited) Electrolyte Design Strategies to High-Voltage and Safe Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 792-792.	0.0	0
36	Cyclic Phosphate-Based Nonflammable Electrolytes for High Energy and Safe Lithium-Ion Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 691-691.	0.0	0