Candace K Chan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9254403/publications.pdf

Version: 2024-02-01

108 papers

16,341 citations

36 h-index 90 g-index

115 all docs

115 docs citations

115 times ranked 18657 citing authors

#	Article	IF	CITATIONS
1	High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 2008, 3, 31-35.	15.6	5,860
2	Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes. Nano Letters, 2009, 9, 1872-1876.	4.5	1,440
3	Crystalline-Amorphous Coreâ^'Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes. Nano Letters, 2009, 9, 491-495.	4.5	1,110
4	High Capacity Li Ion Battery Anodes Using Ge Nanowires. Nano Letters, 2008, 8, 307-309.	4.5	855
5	Emerging opportunities for nanotechnology to enhance water security. Nature Nanotechnology, 2018, 13, 634-641.	15.6	627
6	Spinel LiMn ₂ O ₄ Nanorods as Lithium Ion Battery Cathodes. Nano Letters, 2008, 8, 3948-3952.	4.5	579
7	Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. Journal of Power Sources, 2009, 189, 1132-1140.	4.0	559
8	Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes. Journal of Physical Chemistry C, 2009, 113, 11390-11398.	1.5	510
9	Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes. ACS Nano, 2010, 4, 1443-1450.	7.3	492
10	Origami lithium-ion batteries. Nature Communications, 2014, 5, 3140.	5.8	466
11	Fast, Completely Reversible Li Insertion in Vanadium Pentoxide Nanoribbons. Nano Letters, 2007, 7, 490-495.	4.5	375
12	Composite Polymer Electrolytes with Li ₇ La ₃ Zr ₂ O ₁₂ Garnet-Type Nanowires as Ceramic Fillers: Mechanism of Conductivity Enhancement and Role of Doping and Morphology. ACS Applied Materials & Doping and Morphology.	4.0	316
13	Structural and electrochemical study of the reaction of lithium with silicon nanowires. Journal of Power Sources, 2009, 189, 34-39.	4.0	276
14	Stepwise Nanopore Evolution in One-Dimensional Nanostructures. Nano Letters, 2010, 10, 1409-1413.	4.5	229
15	Folding Paper-Based Lithium-Ion Batteries for Higher Areal Energy Densities. Nano Letters, 2013, 13, 4969-4974.	4.5	218
16	Shape Evolution of Layer-Structured Bismuth Oxychloride Nanostructures via Low-Temperature Chemical Vapor Transport. Chemistry of Materials, 2009, 21, 247-252.	3.2	146
17	Hexavalent chromium removal using metal oxide photocatalysts. Applied Catalysis B: Environmental, 2015, 176-177, 740-748.	10.8	135
18	Hyperbranched Lead Selenide Nanowire Networks. Nano Letters, 2007, 7, 1095-1099.	4.5	131

#	Article	IF	CITATIONS
19	Porous carbon sphere anodes for enhanced lithium-ion storage. Journal of Materials Chemistry A, 2015, 3, 9861-9868.	5.2	130
20	Cutting single-walled carbon nanotubes. Nanotechnology, 2005, 16, S539-S544.	1.3	101
21	Facile One-Pot Synthesis of Highly Porous Carbon Foams for High-Performance Supercapacitors Using Template-Free Direct Pyrolysis. ACS Applied Materials & Samp; Interfaces, 2015, 7, 8952-8960.	4.0	91
22	Nanostructured Garnet-Type Solid Electrolytes for Lithium Batteries: Electrospinning Synthesis of Li ₇ La ₃ Zr ₂ O ₁₂ Nanowires and Particle Size-Dependent Phase Transformation. Journal of Physical Chemistry C, 2015, 119, 14947-14953.	1.5	87
23	Nanostructured Garnet-type Li7La3Zr2O12: Synthesis, Properties, and Opportunities as Electrolytes for Li-ion Batteries. Electrochimica Acta, 2017, 253, 268-280.	2.6	83
24	Fullerene stabilized gold nanoparticles supported on titanium dioxide for enhanced photocatalytic degradation of methyl orange and catalytic reduction of 4-nitrophenol. Journal of Environmental Chemical Engineering, 2018, 6, 3827-3836.	3.3	82
25	Morphology Control of Layer-Structured Gallium Selenide Nanowires. Nano Letters, 2007, 7, 199-203.	4.5	79
26	Preparation of amorphous and nanocrystalline sodium tantalum oxide photocatalysts with porous matrix structure for overall water splitting. Nano Energy, 2013, 2, 116-123.	8.2	69
27	Highly Active Cobaltâ€Based Electrocatalysts with Facile Incorporation of Dopants for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 3491-3495.	7.2	67
28	High surface area, amorphous titania with reactive Ti ³⁺ through a photo-assisted synthesis method for photocatalytic H ₂ generation. Journal of Materials Chemistry A, 2017, 5, 10957-10967.	5.2	55
29	Laser Fragmentation″nduced Defectâ€Rich Cobalt Oxide Nanoparticles for Electrochemical Oxygen Evolution Reaction. ChemSusChem, 2020, 13, 520-528.	3.6	55
30	Enhanced lithium ion conductivity in lithium lanthanum titanate solid electrolyte nanowires prepared by electrospinning. Journal of Power Sources, 2015, 287, 164-169.	4.0	45
31	Spent Tea Leaf Templating of Cobalt-Based Mixed Oxide Nanocrystals for Water Oxidation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32488-32495.	4.0	43
32	Layered Double Hydroxide/Chitosan Nanocomposite Beads as Sorbents for Selenium Oxoanions. Industrial & Description of the Selenium Oxoanions of the Selenium Oxoanions of the Selenium Oxoanions.	1.8	42
33	Coffeeâ€Waste Templating of Metal Ionâ€Substituted Cobalt Oxides for the Oxygen Evolution Reaction. ChemSusChem, 2018, 11, 605-611.	3.6	40
34	Titanium Dioxide–Layered Double Hydroxide Composite Material for Adsorption–Photocatalysis of Water Pollutants. Langmuir, 2019, 35, 8699-8708.	1.6	40
35	Preparation of Nano- and Microstructured Garnet Li ₇ La ₃ Zr ₂ O ₁₂ Solid Electrolytes for Li-lon Batteries via Cellulose Templating. ACS Sustainable Chemistry and Engineering, 2016, 4, 6391-6398.	3.2	39
36	Tissue paper-derived porous carbon encapsulated transition metal nanoparticles as advanced non-precious catalysts: Carbon-shell influence on the electrocatalytic behaviour. Journal of Colloid and Interface Science, 2021, 581, 905-918.	5.0	39

#	Article	IF	CITATIONS
37	Carbon nanosphere adsorbents for removal of arsenate and selenate from water. Environmental Science: Nano, 2015, 2, 245-250.	2.2	36
38	Highly Active Cobaltâ€Based Electrocatalysts with Facile Incorporation of Dopants for the Oxygen Evolution Reaction. Angewandte Chemie, 2019, 131, 3529-3533.	1.6	36
39	Highâ€Density Oxygen Doping ofÂConductive Metal Sulfides forÂBetterÂPolysulfide Trapping and Li ₂ Sâ€S ₈ ÂRedox Kinetics in High Areal Capacity Lithium–Sulfur Batteries. Advanced Science, 2022, 9, e2200840.	5 . 6	36
40	Synthesis of Fine Cubic Li ₇ La ₃ Zr ₂ O ₁₂ Powders in Molten LiCl–KCl Eutectic and Facile Densification by Reversal of Li ⁺ /H ⁺ Exchange. ACS Applied Energy Materials, 2018, 1, 552-560.	2.5	34
41	Relating crack-tip deformation to mineralization and fracture resistance in human femur cortical bone. Bone, 2009, 45, 427-434.	1.4	30
42	Type I Clathrates as Novel Silicon Anodes: An Electrochemical and Structural Investigation. Advanced Science, 2015, 2, 1500057.	5 . 6	30
43	Electrochemical Cycling of Sodiumâ€Filled Silicon Clathrate. ChemElectroChem, 2014, 1, 347-353.	1.7	29
44	Oxidation–reduction assisted exfoliation of LiCoO2 into nanosheets and reassembly into functional Li-ion battery cathodes. Journal of Materials Chemistry A, 2016, 4, 6902-6910.	5 . 2	27
45	Al ₂ O ₃ and SiO ₂ Atomic Layer Deposition Layers on ZnO Photoanodes and Degradation Mechanisms. ACS Applied Materials & Samp; Interfaces, 2017, 9, 16138-16147.	4.0	26
46	Anodes for Lithium-Ion Batteries Based on Type I Silicon Clathrate Ba ₈ Al ₁₆ Si ₃₀ - Role of Processing on Surface Properties and Electrochemical Behavior. ACS Applied Materials & Electrochemical Behavior.	4.0	26
47	Selenium Removal from Sulfate-Containing Groundwater Using Granular Layered Double Hydroxide Materials. Industrial & Engineering Chemistry Research, 2017, 56, 2458-2465.	1.8	24
48	Highly Conductive Garnet-Type Electrolytes: Access to Li _{6.5} La ₃ Zr _{1.5} Ta _{0.5} O ₁₂ Prepared by Molten Salt and Solid-State Methods. ACS Applied Materials & Salt and Solid-State Methods.	4.0	24
49	First-Principles Study of Lithiation of Type I Ba-Doped Silicon Clathrates. Journal of Physical Chemistry C, 2015, 119, 28247-28257.	1.5	22
50	Synthesis of TiO ₂ nanosheet photocatalysts from exfoliation of TiS ₂ and hydrothermal treatment. Journal of Materials Research, 2018, 33, 3540-3548.	1.2	22
51	Needleless Electrospinning for High Throughput Production of Li ₇ La ₃ Zr ₂ O ₁₂ Solid Electrolyte Nanofibers. Industrial & Solid	1.8	22
52	Printed Carbon Nanotubes on Polymer Films for Active Origami. Materials Research Letters, 2013, 1, 13-18.	4.1	20
53	Reduction in Formation Temperature of Ta-Doped Lithium Lanthanum Zirconate by Application of Lux–Flood Basic Molten Salt Synthesis. ACS Applied Energy Materials, 2020, 3, 6466-6475.	2.5	20
54	Electrochemical Properties of Nanostructured Copper Hydroxysulfate Mineral Brochantite upon Reaction with Lithium. Nano Letters, 2013, 13, 6055-6063.	4.5	19

#	Article	IF	Citations
55	New hydrogen titanium phosphate sulfate electrodes for Li-ion and Na-ion batteries. Journal of Power Sources, 2017, 343, 197-206.	4.0	18
56	Experimental and Computational Study of the Lithiation of Ba8AlyGe46–y Based Type I Germanium Clathrates. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37981-37993.	4.0	17
57	Synthesis of Hyperbranched Perovskite Nanostructures. Crystal Growth and Design, 2013, 13, 3901-3907.	1.4	16
58	Surface Properties of Battery Materials Elucidated Using Scanning Electrochemical Microscopy: The Case of Type I Silicon Clathrate. ChemElectroChem, 2020, 7, 665-671.	1.7	16
59	Electrochemical and Photoelectrochemical Properties of the Copper Hydroxyphosphate Mineral Libethenite. ChemElectroChem, 2014, 1, 663-672.	1.7	15
60	Synthesis of Jarosite and Vanadium Jarosite Analogues Using Microwave Hydrothermal Reaction and Evaluation of Composition-Dependent Electrochemical Properties. Journal of Physical Chemistry C, 2016, 120, 9702-9712.	1.5	14
61	Nonaqueous Polymer Combustion Synthesis of Cubic Li ₇ La ₃ Zr ₂ O ₁₂ Nanopowders. ACS Applied Materials & mp; Interfaces, 2020, 12, 953-962.	4.0	14
62	First principles and experimental studies of empty Si ₄₆ as anode materials for Li-ion batteries. Journal of Materials Research, 2016, 31, 3657-3665.	1.2	13
63	Metal-Organic frameworks-derived multifunctional carbon encapsulated metallic nanocatalysts for catalytic peroxymonosulfate activation and electrochemical hydrogen generation. Molecular Catalysis, 2020, 498, 111241.	1.0	13
64	Dualâ€Templated Cobalt Oxide for Photochemical Water Oxidation. ChemSusChem, 2016, 9, 409-415.	3.6	12
65	Pyrochlore nanocrystals as versatile quasi-single-source precursors to lithium conducting garnets. Journal of Materials Chemistry A, 2020, 8, 17405-17410.	5.2	12
66	Structural Origin of Reversible Li Insertion in Guestâ€Free, Typeâ€I Silicon Clathrates. Advanced Energy and Sustainability Research, 2021, 2, 2000114.	2.8	12
67	Structural and Photoelectrochemical Evaluation of Nanotextured Snâ€Doped AgInS ₂ Films Prepared by Spray Pyrolysis. ChemSusChem, 2013, 6, 102-109.	3.6	11
68	Ab Initio Investigation of Li and Na Migration in Guest-Free, Type I Clathrates. Journal of Physical Chemistry C, 2019, 123, 22812-22822.	1.5	11
69	Observation of Elemental Inhomogeneity and Its Impact on Ionic Conductivity in Liâ€Conducting Garnets Prepared with Different Synthesis Methods. Advanced Energy and Sustainability Research, 2021, 2, 2000109.	2.8	11
70	Phase transformations in one-dimensional materials: applications in electronics and energy sciences. Journal of Materials Chemistry, 2009, 19, 5879.	6.7	10
71	Facile synthesis of Al-stabilized lithium garnets by a solution-combustion technique for all solid-state batteries. Materials Advances, 2021, 2, 5181-5188.	2.6	10
72	Polyelectrolyte platform for sensitive detection of biological analytes via reversible fluorescence quenching. Polymer, 2007, 48, 7582-7589.	1.8	9

#	Article	IF	CITATIONS
73	Carbon Nanotube–Based Electrodes for Detection of Low–ppb Level Hexavalent Chromium Using Amperometry. ECS Journal of Solid State Science and Technology, 2016, 5, M3026-M3031.	0.9	9
74	Zn _{<i>x</i>} Mn _{1â€"<i>x</i>} O Solid Solutions in the Rocksalt Structure: Optical, Charge Transport, and Photoelectrochemical Properties. ACS Applied Energy Materials, 2018, 1, 260-266.	2.5	8
7 5	Understanding the Amorphous Lithiation Pathway of the Type I Ba ₈ Ge ₄₃ Clathrate with Synchrotron X-ray Characterization. Chemistry of Materials, 2020, 32, 9444-9457.	3.2	8
76	Solid-State Electrochemical Synthesis of Silicon Clathrates Using a Sodium-Sulfur Battery Inspired Approach. Journal of the Electrochemical Society, 2021, 168, 020516.	1.3	8
77	Investigation of the Optical Absorbance, Electronic, and Photocatalytic Properties of (Cu1–xCox)2(OH)PO4 Solid Solutions. Journal of Physical Chemistry C, 2015, 119, 4684-4693.	1.5	7
78	Exfoliation of LiNi _{1/3} Mn _{1/3} Co _{1/3} O ₂ into Nanosheets Using Electrochemical Oxidation and Reassembly with Dialysis or Flocculation. Langmuir, 2017, 33, 9271-9279.	1.6	7
79	First-Principles Studies of the Lithiation and Delithiation Paths in Si Anodes in Li-Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 22775-22786.	1.5	7
80	<i>In situ</i> total scattering experiments of nucleation and crystallisation of tantalum-based oxides: from highly dilute solutions <i>via</i> cluster formation to nanoparticles. Nanoscale, 2021, 13, 150-162.	2.8	7
81	High-performance lithium battery anodes using silicon nanowires. , 2010, , 187-191.		6
82	Synthesis and Characterization of Empty Silicon Clathrates for Anode Applications in Li-ion Batteries. MRS Advances, 2016, 1, 3043-3048.	0.5	6
83	Hyperbranched potassium lanthanum titanate perovskite photocatalysts for hydrogen generation. Journal of Materials Chemistry A, 2016, 4, 2837-2841.	5.2	5
84	Monitoring the Structure Evolution of Titanium Oxide Photocatalysts: From the Molecular Form via the Amorphous State to the Crystalline Phase. Chemistry - A European Journal, 2021, 27, 11600-11608.	1.7	5
85	Advanced and In Situ Analytical Methods for Solar Fuel Materials. Topics in Current Chemistry, 2015, 371, 253-324.	4.0	4
86	Size and strain effects on mechanical and electronic properties of green phosphorene nanoribbons. AIP Advances, 2018, 8, .	0.6	4
87	Layered Double Hydroxide Sorbents for Removal of Selenium from Power Plant Wastewaters. ChemEngineering, 2019, 3, 20.	1.0	4
88	Electrochemical Lithium Alloying Behavior of Guest-Free Type II Silicon Clathrates. Journal of Physical Chemistry C, 2021, 125, 19110-19118.	1.5	4
89	Structural and Electrochemical Properties of Type VIII Ba ₈ Ga _{16â^î^(} Sn _{30+î^} Clathrate (δâ‰^1) during Lithiation. ACS Applied Materials & Diterraces, 2021, 13, 42564-42578.	4.0	3
90	Web-enabled formative feedback and learning resources for enhancing student attitude, achievement, and persistence., 2014,,.		2

#	Article	IF	Citations
91	Silicon Nanowire Electrodes for Lithium-Ion Battery Negative Electrodes. , 2013, , 1-68.		2
92	Synthesis of Nanostructured Garnets. , 2019, , 25-68.		2
93	Nanowire batteries for next generation electronics. , 2008, , .		1
94	High-performance lithium battery anodes using silicon nanowires. , 0, .		1
95	Synthesis of Li ₇ La ₃ Zr ₂ O ₁₂ Li-lon Conducting Electrolytes By a Rapid Solution-Combustion Method. ECS Meeting Abstracts, 2020, MA2020-02, 941-941.	0.0	1
96	ONE-DIMENSIONAL NANOSTRUCTURED ELECTRODES FOR HIGH CAPACITY LITHIUM-ION BATTERY ELECTRODES., 2011, , 175-217.		0
97	Nanowires for Nanoscale Electronics, Biosensors and Energy Applications. , 2007, , .		О
98	Synthesis of Li-Ion Conducting Garnet Li7La3Zr2O12 Powders in Molten Salt Media: Implications for Future Li-Ion Batteries. ECS Meeting Abstracts, 2018, , .	0.0	0
99	(Invited) Molten Salt Synthesis of Lithium Conducting Garnets for More Scalable Solid-State Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
100	Properties of Li7La3Zr2O12 Solid Electrolytes Synthesized from Highly Basic Molten Salts Fluxes. ECS Meeting Abstracts, 2019, , .	0.0	0
101	Reversible Li Insertion in Guest Free Type II Si Clathrates for Li-Ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
102	How Not to Chase the Wrong Rabbits: Mentorship and Science Lessons from Bob Huggins. ECS Meeting Abstracts, 2019, , .	0.0	0
103	Understanding the Li and Na Intercalation in Si Clathrate Frameworks. ECS Meeting Abstracts, 2021, MA2021-02, 226-226.	0.0	0
104	Structural and Electrochemical Properties of the Type VIII Ba8Ga16–δSn30+δ(δâ‰^1)clathrate during Lithiation. ECS Meeting Abstracts, 2021, MA2021-02, 405-405.	0.0	0
105	Understanding the Lithiation Pathways of Tetrel Clathrates with Synchrotron X-Ray Characterization. ECS Meeting Abstracts, 2020, MA2020-02, 168-168.	0.0	0
106	Effects of Synthesis Method and Parameters on Electrochemical Performance in Li-Conducting Garnets. ECS Meeting Abstracts, 2020, MA2020-02, 985-985.	0.0	0
107	Electrochemical Synthesis of Type I Na ₈ Si ₄₆ Clathrate with a Na Î'''-Alumina Solid Electrolyte. ECS Meeting Abstracts, 2020, MA2020-02, 469-469.	0.0	0
108	(Invited)ÂHigh Surface Area, Amorphous Titania with Reactive Ti ³⁺ through a Photo-Assisted Synthesis Method for Photocatalytic H ₂ Generation. ECS Meeting Abstracts, 2018, MA2018-01, 1874-1874.	0.0	0