Zainul Akmar Zakaria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/925415/publications.pdf

Version: 2024-02-01

71 papers

2,011 citations

304743 22 h-index 243625 44 g-index

78 all docs 78 docs citations

78 times ranked 2548 citing authors

#	Article	IF	Citations
1	Sustainable approaches for biohydrogen and biogas production from corn wastes., 2022,, 207-214.		O
2	Editorial: New Trends in Food Processing: Reducing Food Loss, Waste, and the Environmental Impact. Frontiers in Sustainable Food Systems, 2022, 6, .	3.9	2
3	Environmental Awareness in Batik Making Process. Sustainability, 2022, 14, 6094.	3.2	4
4	Coffee pulp as a source for polyphenols extraction using ultrasound, microwave, and green solvents. Environmental Quality Management, 2022, 32, 451-461.	1.9	7
5	Characterization and antiinflammatory properties of fractionated pyroligneous acid from palm kernel shell. Environmental Science and Pollution Research, 2021, 28, 40535-40543.	5.3	8
6	Equilibrium and kinetics of phenol adsorption by crab shell chitosan. Particulate Science and Technology, 2021, 39, 415-426.	2.1	8
7	Microalgae Microbial Fuel Cell (MMFC) using Chlorella vulgaris and "Batik―Wastewater as Bioelectricity. E3S Web of Conferences, 2021, 226, 00032.	0.5	1
8	Bacterial Reduction of Cr(VI): Operational Challenges and Feasibility. Current Pollution Reports, 2021, 7, 115-127.	6.6	9
9	Activated carbon and biochar from pineapple waste biomass for the removal of methylene blue. Environmental and Toxicology Management, 2021, 1, 30-36.	0.7	16
10	A Review of Bacterial Antibiotic Resistance Genes and Their Removal Strategies from Wastewater. Current Pollution Reports, 2021, 7, 494-509.	6.6	20
11	Vinasse-Based Slow-Release Organo-Mineral Fertilizer with Chitosan-Bentonite Matrix. Jurnal Bahan Alam Terbarukan, 2021, 10, 01-08.	0.2	O
12	Antioxidants, Toxicity, and Nitric Oxide Inhibition Properties of Pyroligneous Acid from Palm Kernel Shell Biomass. Waste and Biomass Valorization, 2020, 11, 6307-6319.	3.4	11
13	Cr(VI) Removal Using the Combination of the Cr(VI)-Resistant and Cr(VI)-Reducing Biofilm and the Alum-Polyacrylamide. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	10
14	Organic and Inorganic Matter Removal Using High Polymeric Al13 Containing Polyaluminium Chloride. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	9
15	Characterization of pyroligneous acid produced from microwave-assisted treatment of palm kernel shell. Journal of Physics: Conference Series, 2020, 1444, 012005.	0.4	O
16	Pyrolytic Products from Oil Palm Biomass and Its Potential Applications. Applied Environmental Science and Engineering for A Sustainable Future, 2020, , 225-236.	0.5	3
17	Oil palm and banana root colonization potential of locally isolated nitrogen-fixing and phosphate-solubilizing bacteria. E3S Web of Conferences, 2020, 202, 01006.	0.5	1
18	Phenolic compound derived from microwave-assisted pyrolysis of coconut shell: Isolation and antibacterial activity testing. E3S Web of Conferences, 2020, 202, 10007.	0.5	0

#	Article	IF	CITATIONS
19	METHYLENE BLUE REMOVAL USING COCONUT SHELL BIOCHAR SYNTHESIZED THROUGH MICROWAVE-ASSISTED PYROLYSIS. Jurnal Teknologi (Sciences and Engineering), 2020, 82, .	0.4	5
20	Less Hazardous Chemical Synthesis from Palm Oil Biomass. , 2020, , 46-59.		0
21	Microwave-assisted production of optimized pyrolysis liquid oil from oil palm fiber. Journal of Cleaner Production, 2018, 182, 404-413.	9.3	48
22	Pyrolysis Products from Residues of Palm Oil Industry. , 2018, , 7-24.		1
23	Oil Palm Biomass and Its Kinetic Transformation Properties. Energy, Environment, and Sustainability, 2018, , 73-87.	1.0	2
24	Preparation, characterization, and dye removal study of activated carbon prepared from palm kernel shell. Environmental Science and Pollution Research, 2018, 25, 5076-5085.	5.3	60
25	Antimicrobial Properties of Optimized Microwave-assisted Pyroligneous Acid from Oil Palm Fiber. Journal of Applied Pharmaceutical Science, 2018, 8, 65-71.	1.0	12
26	PHYSICOCHEMICAL CHARACTERISTICS OF RECYCLED TYRE TREAD COMPOUNDS. Malaysian Journal of Analytical Sciences, 2018, 22, .	0.1	0
27	EFFICACY OF PYROLIGNEOUS ACID FROM PINEAPPLE WASTE BIOMASS AS WOOD PRESERVING AGENT. Jurnal Teknologi (Sciences and Engineering), 2017, 79, .	0.4	3
28	RECYCLING OF OIL PALM EMPTY FRUIT BUNCH AS POTENTIAL CARRIER FOR BIOFERTILIZER FORMULATION. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	5
29	A KINETIC STUDY OF ENZYMATIC HYDROLYSIS OF OIL PALM BIOMASS FOR FERMENTABLE SUGAR USING POLYETHYLENE GLYCOL (PEG) IMMOBILIZED CELLULASE. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	1
30	Chromate detoxification using combination of ChromeBacâ, \$\psi\$ system and immobilized chromate reductase beads. International Biodeterioration and Biodegradation, 2016, 113, 238-243.	3.9	14
31	Special issue on Challenges in Environmental Science and Engineering (CESE-2014) 12–16 October 2014, Johor Bahru, Malaysia. Desalination and Water Treatment, 2016, 57, 7605-7606.	1.0	0
32	Detoxification of Hexavalent Chromium from Industrial Wastewater using a Bacterial Biofilm System. , 2016, , 161-182.		0
33	Optimization of culture conditions for flexirubin production by Chryseobacterium artocarpi CECT 8497 using response surface methodology. Acta Biochimica Polonica, 2015, 62, 185-190.	0.5	24
34	Reactivity of phenolic compounds towards free radicals under in vitro conditions. Journal of Food Science and Technology, 2015, 52, 5790-5798.	2.8	207
35	Antioxidant property and chemical profile of pyroligneous acid from pineapple plant waste biomass. Process Biochemistry, 2015, 50, 1985-1992.	3.7	47
36	Sugarcane bagasse as nutrient and support material for Cr(VI)-reducing biofilm. International Biodeterioration and Biodegradation, 2015, 102, 3-10.	3.9	12

#	Article	IF	CITATIONS
37	Pyroligneous acidâ€"the smoky acidic liquid from plant biomass. Applied Microbiology and Biotechnology, 2015, 99, 611-622.	3.6	91
38	Spray drying of violet pigment from Chromobacterium violaceum UTM 5 and its application in food model systems. International Biodeterioration and Biodegradation, 2015, 102, 324-329.	3.9	20
39	Preparation and characterization of activated carbon from pineapple waste biomass for dye removal. International Biodeterioration and Biodegradation, 2015, 102, 274-280.	3.9	195
40	Chryseobacterium artocarpi sp. nov., isolated from the rhizosphere soil of Artocarpus integer. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 3153-3159.	1.7	35
41	Brown sugar as a low-cost medium for the production of prodigiosin by locally isolated Serratia marcescens UTM1. International Biodeterioration and Biodegradation, 2014, 95, 19-24.	3.9	34
42	Current perspective on bacterial pigments: emerging sustainable compounds with coloring and biological properties for the industry – an incisive evaluation. RSC Advances, 2014, 4, 39523.	3.6	63
43	The potential hazards of Aspergillus sp. in foods and feeds, and the role of biological treatment: A review. Journal of Microbiology, 2014, 52, 807-818.	2.8	18
44	Isolation and characterization of flexirubin type pigment from Chryseobacterium sp. UTM-3T. Biocatalysis and Agricultural Biotechnology, 2014, 3, 103-107.	3.1	42
45	Degradation of oil and grease from high-strength industrial effluents using locally isolated aerobic biosurfactant-producing bacteria. International Biodeterioration and Biodegradation, 2014, 95, 33-40.	3.9	43
46	Special issue on the Challenges in Environmental Science and Engineering, CESE-2013: 29 Oct.–2 Nov., EXCO, Daegu, South Korea. Bioresource Technology, 2014, 165, 1-2.	9.6	2
47	Cr(VI) reduction in naturally rich growth medium and sugarcane bagasse by Acinetobacter haemolyticus. International Biodeterioration and Biodegradation, 2013, 85, 571-576.	3.9	32
48	Bacterial pigments and their applications. Process Biochemistry, 2013, 48, 1065-1079.	3.7	305
49	Optimization of Pigment Production: Case of Chromobacterium violaceum and Serratia marcescens. Springer Briefs in Molecular Science, 2012, , 45-56.	0.1	0
50	Isolation of Pigment-Producing Bacteria and Characterization of the Extracted Pigments. Springer Briefs in Molecular Science, 2012, , 25-44.	0.1	7
51	Application of Bacterial Pigments as Colorant. Springer Briefs in Molecular Science, 2012, , 57-74.	0.1	27
52	Production and Characterization of Violacein by Locally Isolated Chromobacterium violaceum Grown in Agricultural Wastes. Applied Biochemistry and Biotechnology, 2012, 167, 1220-1234.	2.9	66
53	Bacterial Reduction of Cr(VI) at Technical Scaleâ€"The Malaysian Experience. Applied Biochemistry and Biotechnology, 2012, 167, 1641-1652.	2.9	7
54	Application of Bacterial Pigments as Colorant. Springer Briefs in Molecular Science, 2012, , .	0.1	21

#	Article	IF	Citations
55	Utilisation of Rubber Wood Shavings for the Removal of Cu(II) and Ni(II) from Aqueous Solution. Water, Air, and Soil Pollution, 2012, 223, 1649-1659.	2.4	6
56	Isotherm kinetics of Cr(III) removal by non-viable cells of Acinetobacter haemolyticus. Colloids and Surfaces B: Biointerfaces, 2012, 94, 362-368.	5.0	32
57	Pilot-scale removal of chromium from industrial wastewater using the ChromeBacâ,,¢ system. Bioresource Technology, 2010, 101, 4371-4378.	9.6	37
58	Hexavalent Chromium Reduction at Different Growth Phases of Acinetobacter haemolyticus. Environmental Engineering Science, 2009, 26, 1275-1278.	1.6	6
59	Evaluation of the Combined Cr(VI) Removal Capacity of Sawdust and Sawdust-Immobilized Acinetobacter haemolyticus Supplied with Brown Sugar. Water, Air, and Soil Pollution, 2009, 204, 195-203.	2.4	10
60	Chromium(VI) resistance and removal by Acinetobacter haemolyticus. World Journal of Microbiology and Biotechnology, 2009, 25, 1085-1093.	3.6	76
61	Chromium(VI) removal from aqueous solution by untreated rubber wood sawdust. Desalination, 2009, 244, 109-121.	8.2	60
62	Biosorption and bioreduction of Cr(VI) by locally isolated Cr-resistant bacteria. Water Science and Technology, 2007, 56, 117-123.	2.5	3
63	Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater. Journal of Hazardous Materials, 2007, 146, 30-38.	12.4	154
64	Biological detoxification of Cr(VI) using wood-husk immobilized Acinetobacter haemolyticus. Journal of Hazardous Materials, 2007, 148, 164-171.	12.4	50
65	The chemical properties of seaweed for modify concrete. IOP Conference Series: Earth and Environmental Science, 0, 220, 012026.	0.3	4
66	Coffee residue-based activated carbons for phenol removal. Water Practice and Technology, 0, , .	2.0	9
67	Optimisation of microwave-assisted production of acid condensate from palm kernel shell and its biological activities. Biomass Conversion and Biorefinery, 0 , 1 .	4.6	1
68	Microwaveâ€assisted production of biochar from oil palm mesocarp fiber and its dye removal properties. Environmental Quality Management, 0, , .	1.9	1
69	Kajian Sekat Gerak Bakteria Berpenyokong dalam Pengambilan Semula Logam Cu dan Zn. Jurnal Teknologi (Sciences and Engineering), 0, , .	0.4	0
70	Microbial Biotransformation and Biomineralization of Organic-Rich Waste. Current Pollution Reports, 0 , , 1 .	6.6	0
71	Structural-based analysis of antibacterial activities of acid condensate from palm kernel shell. Biomass Conversion and Biorefinery, 0, , 1.	4.6	1