Jing Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/925409/publications.pdf

Version: 2024-02-01

152 papers	2,922 citations	31 h-index	242451 47 g-index
153	153	153	2897
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Glioma segmentation of optimized 3D U-net and prediction of multi-modal survival time. Neural Computing and Applications, 2022, 34, 211-225.	3.2	5
2	Integration of an imbalance framework with novel high-generalizable classifiers for radiomics-based distant metastases prediction of advanced nasopharyngeal carcinoma. Knowledge-Based Systems, 2022, 235, 107649.	4.0	21
3	Virtual Contrast-Enhanced Magnetic Resonance Images Synthesis for Patients With Nasopharyngeal Carcinoma Using Multimodality-Guided Synergistic Neural Network. International Journal of Radiation Oncology Biology Physics, 2022, 112, 1033-1044.	0.4	24
4	Advances in MRIâ€guided precision radiotherapy. Precision Radiation Oncology, 2022, 6, 75-84.	0.4	7
5	Multiresolution residual deep neural network for improving pelvic CBCT image quality. Medical Physics, 2022, 49, 1522-1534.	1.6	10
6	A Multi-Center Study of CT-Based Neck Nodal Radiomics for Predicting an Adaptive Radiotherapy Trigger of Ill-Fitted Thermoplastic Masks in Patients with Nasopharyngeal Carcinoma. Life, 2022, 12, 241.	1.1	9
7	Respiratory 4D-Gating F-18 FDG PET/CT Scan for Liver Malignancies: Feasibility in Liver Cancer Patient and Tumor Quantitative Analysis. Frontiers in Oncology, 2022, 12, 789506.	1.3	1
8	A dualâ€supervised deformation estimation model (DDEM) for constructing ultraâ€quality 4Dâ€MRI based on a commercial lowâ€quality 4Dâ€MRI for liver cancer radiation therapy. Medical Physics, 2022, 49, 3159-3170.	1.6	12
9	Evaluation of Multisource Adaptive MRI Fusion for Gross Tumor Volume Delineation of Hepatocellular Carcinoma. Frontiers in Oncology, 2022, 12, 816678.	1.3	2
10	Deep Learning-Based Automatic Assessment of Radiation Dermatitis in Patients With Nasopharyngeal Carcinoma. International Journal of Radiation Oncology Biology Physics, 2022, 113, 685-694.	0.4	4
11	H-ProSeg: Hybrid ultrasound prostate segmentation based on explainability-guided mathematical model. Computer Methods and Programs in Biomedicine, 2022, 219, 106752.	2.6	20
12	H-SegMed: A Hybrid Method for Prostate Segmentation in TRUS Images via Improved Closed Principal Curve and Improved Enhanced Machine Learning. International Journal of Computer Vision, 2022, 130, 1896-1919.	10.9	12
13	Motion-resolved and free-breathing liver MRF. Magnetic Resonance Imaging, 2022, 91, 69-80.	1.0	4
14	Review of functional magnetic resonance imaging in the assessment of nasopharyngeal carcinoma treatment response. Precision Radiation Oncology, 2022, 6, 177-185.	0.4	1
15	Building reliable radiomic models using image perturbation. Scientific Reports, 2022, 12, .	1.6	16
16	Improving liver tumor image contrast and synthesizing novel tissue contrasts by adaptive multiparametric magnetic resonance imaging fusion. Precision Radiation Oncology, 2022, 6, 190-198.	0.4	1
17	H-ProMed: Ultrasound image segmentation based on the evolutionary neural network and an improved principal curve. Pattern Recognition, 2022, 131, 108890.	5.1	18
18	Fuzzy Clustering Based on Automated Feature Pattern-Driven Similarity Matrix Reduction. IEEE Transactions on Computational Social Systems, 2021, 8, 1203-1212.	3.2	8

#	Article	IF	CITATIONS
19	Artificial intelligence should be part of medical physics graduate program curriculum. Medical Physics, 2021, 48, 1457-1460.	1.6	6
20	Deep learning-based bone suppression in chest radiographs using CT-derived features: a feasibility study. Quantitative Imaging in Medicine and Surgery, 2021, 11, 4807-4819.	1.1	4
21	A review of deep learning-based three-dimensional medical image registration methods. Quantitative Imaging in Medicine and Surgery, 2021, 11, 4895-4916.	1.1	33
22	Radiation-induced lung damage in patients treated with stereotactic body radiotherapy after EGFR-TKIs: is there any difference from stereotactic body radiotherapy alone?. Annals of Palliative Medicine, 2021, 10, 2832-2842.	0.5	6
23	Investigation of a Novel Deep Learning-Based Computed Tomography Perfusion Mapping Framework for Functional Lung Avoidance Radiotherapy. Frontiers in Oncology, 2021, 11, 644703.	1.3	10
24	Artificial intelligence for prediction of measurementâ€based patientâ€specific quality assurance is ready for prime time. Medical Physics, 2021, 48, 2701-2704.	1.6	6
25	Investigation of the effect of acquisition schemes on time-resolved magnetic resonance fingerprinting. Physics in Medicine and Biology, 2021, 66, 095013.	1.6	3
26	Universal implementation of automated treatment planning software will be detrimental to future generations of trainees. Medical Physics, 2021, 48, 3409-3412.	1.6	0
27	Signal Enhancement of Low Magnetic Field Magnetic Resonance Image Using a Conventional- and Cyclic-Generative Adversarial Network Models With Unpaired Image Sets. Frontiers in Oncology, 2021, 11, 660284.	1.3	2
28	A generative adversarial network (GAN)-based technique for synthesizing realistic respiratory motion in the extended cardiac-torso (XCAT) phantoms. Physics in Medicine and Biology, 2021, 66, 115018.	1.6	5
29	Deep Learning-Based Computed Tomography Perfusion Mapping (DL-CTPM) for Pulmonary CT-to-Perfusion Translation. International Journal of Radiation Oncology Biology Physics, 2021, 110, 1508-1518.	0.4	16
30	MRI super-resolution via realistic downsampling with adversarial learning. Physics in Medicine and Biology, 2021, 66, 205004.	1.6	10
31	Slice-stacking T2-weighted MRI for fast determination of internal target volume for liver tumor. Quantitative Imaging in Medicine and Surgery, 2021, 11, 32-42.	1.1	3
32	Study of Spinal Cord Substructure Expansion Margin in Esophageal Cancer. Technology in Cancer Research and Treatment, 2021, 20, 153303382110245.	0.8	1
33	Deep learning for automatic target volume segmentation in radiation therapy: a review. Quantitative Imaging in Medicine and Surgery, 2021, 11, 4847-4858.	1.1	19
34	Multiâ€Contrast Fourâ€dimensional Magnetic Resonance Imaging (MCâ€4Dâ€MRI): development and initial evaluation in liver tumor patients. Medical Physics, 2021, 48, 7984.	1.6	5
35	Multi-Organ Omics-Based Prediction for Adaptive Radiation Therapy Eligibility in Nasopharyngeal Carcinoma Patients Undergoing Concurrent Chemoradiotherapy. Frontiers in Oncology, 2021, 11, 792024.	1.3	22
36	Clinical implementation of AI technologies will require interpretable AI models. Medical Physics, 2020, 47, 1-4.	1.6	63

#	Article	IF	Citations
37	A Review on Application of Deep Learning Algorithms in External Beam Radiotherapy Automated Treatment Planning. Frontiers in Oncology, 2020, 10, 580919.	1.3	56
38	Knowledge Models as Teaching Aid for Training Intensity Modulated Radiation Therapy Planning: A Lung Cancer Case Study. Frontiers in Artificial Intelligence, 2020, 3, 66.	2.0	3
39	A review on 3D deformable image registration and its application in dose warping. Radiation Medicine and Protection, 2020, 1, 171-178.	0.4	10
40	Timeâ€resolved magnetic resonance fingerprinting for radiotherapy motion management. Medical Physics, 2020, 47, 6286-6293.	1.6	13
41	A modern review of the uncertainties in volumetric imaging of respiratoryâ€induced target motion in lung radiotherapy. Medical Physics, 2020, 47, e988-e1008.	1.6	22
42	Volumetric cine magnetic resonance imaging (VC-MRI) using motion modeling, free-form deformation and multi-slice undersampled 2D cine MRI reconstructed with spatio-temporal low-rank decomposition. Quantitative Imaging in Medicine and Surgery, 2020, 10, 432-450.	1.1	12
43	Motion robust 4D-MRI sorting based on anatomic feature matching: A digital phantom simulation study. Radiation Medicine and Protection, 2020, 1, 41-47.	0.4	3
44	Lowâ€dose radiation as a treatment for COVIDâ€19 pneumonia: A threat or real opportunity?. Medical Physics, 2020, 47, 3773-3776.	1.6	17
45	The open access financial model hinders the growth of medical physics research in low―and middle―ncome countries. Medical Physics, 2020, 47, 5972-5975.	1.6	5
46	Pseudoâ€CT generation from multiâ€parametric MRI using a novel multiâ€channel multiâ€path conditional generative adversarial network for nasopharyngeal carcinoma patients. Medical Physics, 2020, 47, 1750-1762.	1.6	52
47	Open access journals are the future of scientific publishing and medical physicist should embrace the change. Medical Physics, 2020, 47, 833-836.	1.6	1
48	Infection prevention and control measures during COVIDâ€19 from medical physics perspective: A single institution experience from China. Journal of Applied Clinical Medical Physics, 2020, 21, 221-222.	0.8	7
49	Editorial: Magnetic Resonance Imaging for Radiation Therapy. Frontiers in Oncology, 2020, 10, 483.	1.3	4
50	FLASH radiotherapy: Newsflash or flash in the pan?. Medical Physics, 2019, 46, 4287-4290.	1.6	31
51	Pretreatment Prediction of Adaptive Radiation Therapy Eligibility Using MRI-Based Radiomics for Advanced Nasopharyngeal Carcinoma Patients. Frontiers in Oncology, 2019, 9, 1050.	1.3	43
52	Probability-based 3D k-space sorting for motion robust 4D-MRI. Quantitative Imaging in Medicine and Surgery, 2019, 9, 1326-1336.	1.1	1
53	A Spatiotemporal-Constrained Sorting Method for Motion-Robust 4D-MRI: A Feasibility Study. International Journal of Radiation Oncology Biology Physics, 2019, 103, 758-766.	0.4	8
54	National survey of patient specific IMRT quality assurance in China. Radiation Oncology, 2019, 14, 69.	1.2	20

#	Article	lF	CITATIONS
55	Evaluation of dosimetric uncertainty caused by <scp>MR</scp> geometric distortion in <scp>MRI</scp> â€based liver <scp>SBRT</scp> treatment planning. Journal of Applied Clinical Medical Physics, 2019, 20, 43-50.	0.8	5
56	In the future, disruptive innovation in radiation oncology technology will be initiated mostly by entrepreneurs. Medical Physics, 2019, 46, 1949-1952.	1.6	4
57	A hybrid proton and hyperpolarized gas tagging MRI technique for lung respiratory motion imaging: a feasibility study. Physics in Medicine and Biology, 2019, 64, 105019.	1.6	2
58	Liver 4D-MRI: An Image Mutual Information based Retrospective Self-sorting Method., 2019,,.		0
59	A robust deformable image registration enhancement method based on radial basis function. Quantitative Imaging in Medicine and Surgery, 2019, 9, 1315-1325.	1.1	3
60	The VAMPIRE challenge: A multiâ€institutional validation study of CT ventilation imaging. Medical Physics, 2019, 46, 1198-1217.	1.6	59
61	4D liver tumor localization using cone-beam projections and a biomechanical model. Radiotherapy and Oncology, 2019, 133, 183-192.	0.3	16
62	The use of six degrees of freedom couch is only clinically beneficial in stereotactic radio surgery. Medical Physics, 2019, 46, 415-418.	1.6	7
63	Transmission detectors are safe and the future for patientâ€specific <scp>QA</scp> in radiation therapy. Medical Physics, 2019, 46, 1-4.	1.6	35
64	Deriving Lung Perfusion Directly from CT Image Using Deep Convolutional Neural Network: A Preliminary Study. Lecture Notes in Computer Science, 2019, , 102-109.	1.0	5
65	Constructing Novel Prognostic Biomarkers of Advanced Nasopharyngeal Carcinoma from Multiparametric MRI Radiomics Using Ensemble-Model Based Iterative Feature Selection. , 2019, , .		2
66	Artificial intelligence will soon change the landscape of medical physics research and practice. Medical Physics, 2018, 45, 1791-1793.	1.6	57
67	A career path for pure academic medical physicists in radiation oncology should be established. Medical Physics, 2018, 45, 2853-2856.	1.6	1
68	Treatment planning based on lung functional avoidance is not ready for clinical deployment. Medical Physics, 2018, 45, 2353-2356.	1.6	4
69	Accelerating volumetric cine MRI (VC-MRI) using undersampling for real-time 3D target localization/tracking in radiation therapy: a feasibility study. Physics in Medicine and Biology, 2018, 63, 01NT01.	1.6	16
70	Application of the 4-D XCAT Phantoms in Biomedical Imaging and Beyond. IEEE Transactions on Medical Imaging, 2018, 37, 680-692.	5.4	65
71	Efficacy and Safety of Low-Dose Iodine Plaque Brachytherapy for Juxtapapillary Choroidal Melanoma. American Journal of Ophthalmology, 2018, 186, 32-40.	1.7	14
72	Freeâ€breathing abdominal <scp>MRI</scp> improved by repeated kâ€ŧâ€subsampling and artifactâ€minimizatic (Re <scp>KAM</scp>). Medical Physics, 2018, 45, 178-190.	on 1.6	6

#	Article	IF	CITATIONS
73	Spatial-temporal variability of radiomic features and its effect on the classification of lung cancer histology. Physics in Medicine and Biology, 2018, 63, 225003.	1.6	44
74	An initial investigation of hyperpolarized gas tagging magnetic resonance imaging in evaluating deformable image registrationâ€based lung ventilation. Medical Physics, 2018, 45, 5535-5542.	1.6	4
7 5	In modern linacs monitor units should be defined in water at 10Âcm depth rather than at <i>d</i> _{max} . Medical Physics, 2018, 45, 4789-4792.	1.6	1
76	A Novel method to generate onâ€board 4D MRI using prior 4D MRI and onâ€board kV projections from a conventional LINAC for target localization in liver SBRT. Medical Physics, 2018, 45, 3238-3245.	1.6	11
77	<scp>CAMPEP</scp> graduate program standards should require a dedicated course in Magnetic Resonance Imaging physics. Journal of Applied Clinical Medical Physics, 2018, 19, 5-8.	0.8	3
78	A multisource adaptive magnetic resonance image fusion technique for versatile contrast magnetic resonance imaging. Cancer Translational Medicine, 2018, 4, 65.	0.2	6
79	Fourâ€dimensional diffusionâ€weighted MR imaging (4Dâ€DWI): a feasibility study. Medical Physics, 2017, 44, 397-406.	1.6	17
80	Impact of moving target on measurement accuracy in 3D and 4D PET imagingâ€"a phantom study. Advances in Radiation Oncology, 2017, 2, 94-100.	0.6	6
81	Retrospective four-dimensional magnetic resonance imaging with image-based respiratory surrogate: a sagittal–coronal–diaphragm point of intersection motion tracking method. Journal of Medical Imaging, 2017, 4, 024007.	0.8	4
82	Uncertainties of IGRT for lung cancer. , 2017, , 235-260.		1
83	Markerless four-dimensional-cone beam computed tomography projection-phase sorting using prior knowledge and patient motion modeling: A feasibility study. Cancer Translational Medicine, 2017, 3, 185.	0.2	2
84	Motion estimation of the liver based on deformable image registration: a comparison between four-dimensional-computed tomography and four-dimensional-magnetic resonance imaging. Cancer Translational Medicine, 2017, 3, 153.	0.2	1
85	Markerless Four-Dimensional-Cone Beam Computed Tomography Projection-Phase Sorting Using Prior Knowledge and Patient Motion Modeling: A Feasibility Study. Cancer Translational Medicine, 2017, 3, 185-193.	0.2	1
86	A probabilityâ€based multiâ€cycle sorting method for 4Dâ€MRI: A simulation study. Medical Physics, 2016, 43, 6375-6385.	1.6	6
87	Evaluation of Radiotherapy Response Assessment for Gynecological Cancer Patients Using Texture Feature Extraction from Diffusion Weighted MRI. Brachytherapy, 2016, 15, S81-S82.	0.2	O
88	Dosimetry, Feasibility, and Acute Toxicity of Combined Intracavitary Brachytherapy and Free-Hand Interstitial Needle Placement for Locally Advanced Cervix and Uterine Cancer. Brachytherapy, 2016, 15, S86-S87.	0.2	0
89	Using Varian's Eclipse Scripting API to Calculate, Add, and Report Biologically Equivalent Doses for Gynecological Brachytherapy and External Beam Radiation Therapy Patients. Brachytherapy, 2016, 15, S137-S138.	0.2	O
90	On the Utility of Pre Treatment kV-CBCT for MRI-Based Planning of Cervical Cancer Patients. Brachytherapy, 2016, 15, S160-S161.	0.2	0

#	Article	IF	Citations
91	A Technique for Generating Volumetric Cine-Magnetic Resonance Imaging. International Journal of Radiation Oncology Biology Physics, 2016, 95, 844-853.	0.4	46
92	Vaginal Dose Is Associated With Toxicity in Image Guided Tandem Ring or Ovoid-Based Brachytherapy. International Journal of Radiation Oncology Biology Physics, 2016, 94, 1099-1105.	0.4	30
93	Target-Matching Accuracy in Stereotactic Body Radiation Therapy of Lung Cancer: An Investigation Based on Four-Dimensional Digital Human Phantom. Cancer Translational Medicine, 2016, 2, 65.	0.2	2
94	TH-F-202-00: MRI for Radiation Therapy. Medical Physics, 2016, 43, 3902-3903.	1.6	0
95	SU-F-J-103: Assessment of Liver Tumor Contrast for Radiation Therapy: Inter-Patient and Inter-Sequence Variability. Medical Physics, 2016, 43, 3430-3430.	1.6	0
96	Four dimensional magnetic resonance imaging with retrospective <i>k</i> â€space reordering: A feasibility study. Medical Physics, 2015, 42, 534-541.	1.6	39
97	Accuracy of respiratory motion measurement of 4D-MRI: A comparison between cine and sequential acquisition. Medical Physics, 2015, 43, 179-187.	1.6	20
98	T2â€weighted four dimensional magnetic resonance imaging with resultâ€driven phase sorting. Medical Physics, 2015, 42, 4460-4471.	1.6	42
99	Extracting Breathing Signal Using Fourier Transform from Cine Magnetic Resonance Imaging. Cancer Translational Medicine, $2015,1,16.$	0.2	5
100	Evaluating Radiation-induced White Matter Changes in Patients Treated with Stereotactic Radiosurgery Using Diffusion Tensor Imaging: A Pilot Study. Technology in Cancer Research and Treatment, 2014, 13, 21-28.	0.8	9
101	An adaptive finite element method to cope with a large scale lung deformation in magnetic resonance images. , 2014, , .		0
102	Four-Dimensional Magnetic Resonance Imaging Using Axial Body Area as Respiratory Surrogate: Initial Patient Results. International Journal of Radiation Oncology Biology Physics, 2014, 88, 907-912.	0.4	40
103	Body mass index, dose to organs at risk during vaginal brachytherapy, and the role of three-dimensional CT-based treatment planning. Brachytherapy, 2014, 13, 332-336.	0.2	12
104	Uncertainties of 4-dimensional computed tomography-based tumor motion measurement for lung stereotactic body radiation therapy. Practical Radiation Oncology, 2014, 4, e59-e65.	1.1	7
105	A 3Dâ€conformal technique is better than IMRT or VMAT for lung SBRT. Medical Physics, 2014, 41, 040601.	1.6	30
106	Methods, safety, and early clinical outcomes of dose escalation using simultaneous integrated and sequential boosts in patients with locally advanced gynecologic malignancies. Gynecologic Oncology, 2014, 135, 239-243.	0.6	19
107	Investigation of sagittal image acquisition for 4Dâ€MRI with body area as respiratory surrogate. Medical Physics, 2014, 41, 101902.	1.6	45
108	Is Diaphragm Motion a Good Surrogate for Liver Tumor Motion?. International Journal of Radiation Oncology Biology Physics, 2014, 90, 952-958.	0.4	67

#	Article	IF	Citations
109	Dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer. Medical Dosimetry, 2014, 39, 117-121.	0.4	15
110	Uveal Melanoma Treated With Iodine-125 Episcleral Plaque: An Analysis of Dose on Disease Control and Visual Outcomes. International Journal of Radiation Oncology Biology Physics, 2014, 89, 127-136.	0.4	51
111	An Integrated Simulation System Based on Digital Human Phantom for 4D Radiation Therapy of Lung Cancer. Journal of Cancer Therapy, 2014, 05, 749-758.	0.1	3
112	In Reply to Kumar et al. International Journal of Radiation Oncology Biology Physics, 2013, 87, 5-6.	0.4	1
113	Implementation of Remote 3-Dimensional Image Guided Radiation Therapy Quality Assurance for Radiation Therapy Oncology Group Clinical Trials. International Journal of Radiation Oncology Biology Physics, 2013, 85, 271-277.	0.4	11
114	Adaptive Stereotactic Body Radiation Therapy Planning for Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2013, 87, 209-215.	0.4	19
115	Quantification and Minimization of Uncertainties ofÂlnternal Target Volume for Stereotactic Body Radiation Therapy of Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2013, 85, 438-443.	0.4	39
116	Investigation of sliced body volume (SBV) as respiratory surrogate. Journal of Applied Clinical Medical Physics, 2013, 14, 71-80.	0.8	11
117	Establishing a framework to implement 4D XCAT Phantom for 4D radiotherapy research. Journal of Cancer Research and Therapeutics, 2012, 8, 565.	0.3	31
118	A novel technique for markerless, self-sorted 4D-CBCT: Feasibility study. Medical Physics, 2012, 39, 1442-1451.	1.6	45
119	Commissioning a CT-compatible LDR tandem and ovoid applicator using Monte Carlo calculation and 3D dosimetry. Medical Physics, 2012, 39, 4515-4523.	1.6	9
120	Lipiodol: A Potential Direct Surrogate for Cone-Beam Computed Tomography Image Guidance in Radiotherapy of Liver Tumor. International Journal of Radiation Oncology Biology Physics, 2012, 82, 834-841.	0.4	21
121	Reproducibility of Tumor Motion Probability Distribution Function in Stereotactic Body Radiation Therapy of LungÂCancer. International Journal of Radiation Oncology Biology Physics, 2012, 84, 861-866.	0.4	11
122	Dosimetric comparison of treatment plans based on free breathing, maximum, and average intensity projection CTs for lung cancer SBRT. Medical Physics, 2012, 39, 2754-2760.	1.6	47
123	Fourâ€dimensional magnetic resonance imaging (4Dâ€MRI) using imageâ€based respiratory surrogate: A feasibility study. Medical Physics, 2011, 38, 6384-6394.	1.6	164
124	Evaluation of integrated respiratory gating systems on a Novalis Tx system. Journal of Applied Clinical Medical Physics, 2011, 12, 71-79.	0.8	30
125	Dosimetric Comparison of 6 MV and 15 MV Single Arc Rapidarc to Helical TomoTherapy for the Treatment of Pancreatic Cancer. Medical Dosimetry, 2011, 36, 317-320.	0.4	7
126	Helical Tomotherapy Planning for Lung Cancer Based on Ventilation Magnetic Resonance Imaging. Medical Dosimetry, 2011, 36, 389-396.	0.4	10

#	Article	IF	Citations
127	SUâ€Eâ€Tâ€123: Evaluation of Integrated Gating Systems on a Novalis Tx System Using Quantitative Motion Tracking Analyses and Efficient Timeâ€Delay Measurements. Medical Physics, 2011, 38, 3514-3514.	1.6	1
128	Evaluation of motion measurement using cine MRI for image guided stereotactic body radiotherapy on a new phantom platform. Journal of Radiosurgery and SBRT, 2011, 1, 109-115.	0.2	0
129	Dosimetry challenges for implementing emerging technologies. Journal of Physics: Conference Series, 2010, 250, 012002.	0.3	5
130	Effects of breathing variation on gating window internal target volume in respiratory gated	1.6	35
131	Pulmonary kinematics from tagged hyperpolarized heliumâ€3 MRI. Journal of Magnetic Resonance Imaging, 2010, 31, 1236-1241.	1.9	20
132	Chest Wall Volume Receiving >30 Gy Predicts Risk of Severe Pain and/or Rib Fracture After Lung Stereotactic Body Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2010, 76, 796-801.	0.4	261
133	5914-5920.	1.6	8
134	A shortâ€breathâ€hold technique for lung <i>p</i> O ₂ mapping with ³ He MRI. Magnetic Resonance in Medicine, 2010, 63, 127-136.	1.9	44
135	SUâ€GGâ€Tâ€530: Comparison of Coplanar and Nonâ€Coplanar Intensity Modulated Arc Techniques for Treatment of Intracranial Multiâ€Focal Stereotactic Radiosurgery. Medical Physics, 2010, 37, 3309-3309.	1.6	0
136	Tracking brain motion during the cardiac cycle using spiral cine-DENSE MRI. Medical Physics, 2009, 36, 3413-3419.	1.6	46
137	A Rabbit Irradiation Platform for Outcome Assessment of Lung Stereotactic Radiosurgery. International Journal of Radiation Oncology Biology Physics, 2009, 73, 1588-1595.	0.4	10
138	Dynamic MRI of Grid-Tagged Hyperpolarized Helium-3 for the Assessment of Lung Motion During Breathing. International Journal of Radiation Oncology Biology Physics, 2009, 75, 276-284.	0.4	40
139	Reproducibility of Interfraction Lung Motion Probability Distribution Function Using Dynamic MRI: Statistical Analysis. International Journal of Radiation Oncology Biology Physics, 2008, 72, 1228-1235.	0.4	36
140	Imaging the Lung in Radiotherapy: Where 4D Meets Multimodality. Imaging Decisions (Berlin, Germany), 2008, 12, 25-31.	0.2	0
141	The effect of respiratory motion variability and tumor size on the accuracy of average intensity projection from fourâ€dimensional computed tomography: An investigation based on dynamic MRI. Medical Physics, 2008, 35, 4974-4981.	1.6	38
142	Evaluation of the reproducibility of lung motion probability distribution function (PDF) using dynamic MRI. Physics in Medicine and Biology, 2007, 52, 365-373.	1.6	38
143	Evaluation of emphysema severity and progression in a rabbit model: comparison of hyperpolarized 3He and 129Xe diffusion MRI with lung morphometry. Journal of Applied Physiology, 2007, 102, 1273-1280.	1.2	91
144	Evaluation of thoracic spinal cord motion using dynamic MRI. Radiotherapy and Oncology, 2007, 84, 279-282.	0.3	58

#	Article	IF	CITATIONS
145	Direct Measurement of Lung Motion Using Hyperpolarized Helium-3 MR Tagging. International Journal of Radiation Oncology Biology Physics, 2007, 68, 650-653.	0.4	24
146	Dose as a Function of Lung Volume and Planned Treatment Volume in Helical Tomotherapy Intensity-Modulated Radiation Therapy-Based Stereotactic Body Radiation Therapy for Small Lung Tumors. International Journal of Radiation Oncology Biology Physics, 2007, 68, 1229-1237.	0.4	36
147	Estimation of Error in Maximal Intensity Projection-Based Internal Target Volume of Lung Tumors: A Simulation and Comparison Study Using Dynamic Magnetic Resonance Imaging. International Journal of Radiation Oncology Biology Physics, 2007, 69, 895-902.	0.4	60
148	A computer simulated phantom study of tomotherapy dose optimization based on probability density functions (PDF) and potential errors caused by low reproducibility of PDF. Medical Physics, 2006, 33, 3321-3326.	1.6	17
149	Semi-Automatic Prostate Segmentation From Ultrasound Images Using Machine Learning and Principal Curve Based on Interpretable Mathematical Model Expression. Frontiers in Oncology, 0, 12, .	1.3	7
150	Clinical Evaluation of Fiducial Marker Pre-Planning for Virtual Bronchoscopic Navigation Implantation in Lung Tumour Patients Treated With CyberKnife. Frontiers in Oncology, 0, 12, .	1.3	0
151	Volumetric multiâ€phase ventilation imaging based on fourâ€dimensional computed tomography for functional lung avoidance radiotherapy. Medical Physics, 0, , .	1.6	1
152	A Transfer Learning Framework for Deep Learning-Based CT-to-Perfusion Mapping on Lung Cancer Patients. Frontiers in Oncology, 0, 12, .	1.3	3