Aymen I Idris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9253488/publications.pdf

Version: 2024-02-01

304743 233421 2,068 62 22 45 h-index citations g-index papers 66 66 66 2443 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effects of NF-κB manipulation on cancer-associated bone disease. , 2022, , 241-251.		О
2	Role of classical cannabinoid receptors in cancer-associated bone disease., 2022,, 295-303.		0
3	Association of cannabinoid receptor modulation with normal and abnormal skeletal remodelling: A systematic review and meta-analysis of in vitro, in vivo and human studies. Pharmacological Research, 2022, 175, 105928.	7.1	5
4	Anti-inflammatory, but not osteoprotective, effect of the TRAF6/CD40 inhibitor 6877002 in rodent models of local and systemic osteolysis. Biochemical Pharmacology, 2022, 195, 114869.	4.4	2
5	Combined administration of a small-molecule inhibitor of TRAF6 and Docetaxel reduces breast cancer skeletal metastasis and osteolysis. Cancer Letters, 2020, 488, 27-39.	7.2	15
6	JZL184, A Monoacylglycerol Lipase Inhibitor, Induces Bone Loss in a Multiple Myeloma Model of Immunocompetent Mice. Calcified Tissue International, 2020, 107, 72-85.	3.1	9
7	Role of NFκB in Bone Remodeling in Health and Cancer. , 2020, , 294-304.		O
8	Paradoxical effects of JZL184, an inhibitor of monoacylglycerol lipase, on bone remodelling in healthy and cancer-bearing mice. EBioMedicine, 2019, 44, 452-466.	6.1	30
9	Pharmacological Inhibition of NFήB Reduces Prostate Cancer Related Osteoclastogenesis In Vitro and Osteolysis Ex Vivo. Calcified Tissue International, 2019, 105, 193-204.	3.1	17
10	Analysis of Signaling Pathways by Western Blotting and Immunoprecipitation. Methods in Molecular Biology, 2019, 1914, 131-143.	0.9	2
11	Pharmacological inhibition of the IKK $\hat{l}\mu$ /TBK-1 axis potentiates the anti-tumour and anti-metastatic effects of Docetaxel in mouse models of breast cancer. Cancer Letters, 2019, 450, 76-87.	7.2	20
12	Ovariectomy/Orchiectomy in Rodents. Methods in Molecular Biology, 2019, 1914, 261-267.	0.9	19
13	Raman spectroscopy as a predictive tool for monitoring osteoporosis therapy in a rat model of postmenopausal osteoporosis. Journal of Materials Science: Materials in Medicine, 2019, 30, 25.	3.6	6
14	Pharmacological Inhibition of the Skeletal IKK \hat{l}^2 Reduces Breast Cancer-Induced Osteolysis. Calcified Tissue International, 2018, 103, 206-216.	3.1	8
15	TRAF2 in osteotropic breast cancer cells enhances skeletal tumour growth and promotes osteolysis. Scientific Reports, 2018, 8, 39.	3.3	30
16	Recent Trends and Advances in Cancer-Induced Bone Disease. Calcified Tissue International, 2018, 102, 129-130.	3.1	0
17	Bidirectional regulation of bone formation by exogenous and osteosarcoma-derived Sema3A. Scientific Reports, 2018, 8, 6877.	3.3	8
18	Raman spectroscopy predicts the link between claw keratin and bone collagen structure in a rodent model of oestrogen deficiency. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 398-406.	3.8	26

#	Article	IF	CITATIONS
19	Regulation of breast cancer induced bone disease by cancer-specific IKK \hat{I}^2 . Oncotarget, 2018, 9, 16134-16148.	1.8	6
20	TRAFficking Of Breast Cancer Cells To Bone. , 2018, , .		0
21	The Ebb And Flow Of Therapeutic Targeting Of NFκB In Cancer. , 2018, , .		0
22	A Cautionary Tale About Therapeutic Manipulation Of Bone Formation. , 2018, , .		0
23	Emerging therapeutic targets in cancer induced bone disease: A focus on the peripheral type 2 cannabinoid receptor. Pharmacological Research, 2017, 119, 391-403.	7.1	31
24	Pharmacological evidence for the bone-autonomous contribution of the NFκB/β-catenin axis to breast cancer related osteolysis. Cancer Letters, 2017, 410, 180-190.	7.2	10
25	Combined deficiency of the Cnr1 and Cnr2 receptors protects against ageâ€related bone loss by osteoclast inhibition. Aging Cell, 2017, 16, 1051-1061.	6.7	39
26	Nail Testing Detects Bone Loss In Mice: Implications For Osteoporosis And Beyond., 2017,,.		0
27	Therapeutic Targeting Of Marijuana Receptors: Type 1, 2 Or Both - That Is The Question. , 2017, , .		0
28	The Dilemma Of Targeting NFκB For The Treatment Of Secondary Cancer In Bone. , 2017, , .		0
29	Bone Cell-autonomous Contribution of Type 2 Cannabinoid Receptor to Breast Cancer-induced Osteolysis. Journal of Biological Chemistry, 2015, 290, 22049-22060.	3.4	33
30	Rodent models of osteoporosis. BoneKEy Reports, 2014, 3, 614.	2.7	65
31	Genetic Background Modifies the Effects of Type 2 Cannabinoid Receptor Deficiency on Bone Mass and Bone Turnover. Calcified Tissue International, 2014, 94, 259-268.	3.1	21
32	Modulation of Strain-Specific Differences in Gene Expression by Cannabinoid Type 2 Receptor Deficiency. Calcified Tissue International, 2014, 94, 423-432.	3.1	13
33	Selective tyrosine kinase inhibition of insulin-like growth factor-1 receptor inhibits human and mouse breast cancer–induced bone cell activity, bone remodeling, and osteolysis. Journal of Bone and Mineral Research, 2013, 28, 1229-1242.	2.8	15
34	Role of cannabinoids in the regulation of bone remodeling. Frontiers in Endocrinology, 2012, 3, 136.	3.5	70
35	The promise and dilemma of cannabinoid therapy: lessons from animal studies of bone disease. BoneKEy Reports, 2012, 1, 224.	2.7	8
36	Genetic inactivation and pharmacological inhibition of IKK \hat{I}^2 activity in cancer cells inhibit breast cancer-induced osteoclastogenesis, promotes osteoblast differentiation and prevents osteolysis. Bone, 2012, 50, S51.	2.9	O

#	Article	IF	Citations
37	Ovariectomy/Orchidectomy in Rodents. Methods in Molecular Biology, 2012, 816, 545-551.	0.9	60
38	Analysis of Signalling Pathways by Western Blotting and Immunoprecipitation. Methods in Molecular Biology, 2012, 816, 223-232.	0.9	2
39	Hydrogen sulphideâ€releasing diclofenac derivatives inhibit breast cancerâ€induced osteoclastogenesis ⟨i⟩in vitro⟨ i⟩ and prevent osteolysis ⟨i⟩ex vivo⟨ i⟩. British Journal of Pharmacology, 2012, 165, 1914-1925.	5.4	34
40	The promise and dilemma of cannabinoid therapy: Lessons from animal studies of bone disease. IBMS BoneKEy, 2011, 8, 84-95.	0.0	0
41	The Type 2 Cannabinoid Receptor Regulates Bone Mass and Ovariectomy-Induced Bone Loss by Affecting Osteoblast Differentiation and Bone Formation. Endocrinology, 2011, 152, 2141-2149.	2.8	92
42	Cannabinoid Receptors as Target for Treatment of Osteoporosis: A Tale of Two Therapies. Current Neuropharmacology, 2010, 8, 243-253.	2.9	26
43	Cannabinoids and Bone: Friend or Foe?. Calcified Tissue International, 2010, 87, 285-297.	3.1	61
44	The Biphenyl-Carboxylate Derivative ABD328 is a Novel Orally Active Antiresorptive Agent. Calcified Tissue International, 2010, 87, 525-532.	3.1	7
45	Small molecule inhibitors of lîºB kinase signaling inhibit osteoclast formation <i>in vitro</i> and prevent ovariectomyâ€induced bone loss <i>in vivo</i> . FASEB Journal, 2010, 24, 4545-4555.	0.5	51
46	The TRPV1 ion channel antagonist capsazepine inhibits osteoclast and osteoblast differentiation in vitro and ovariectomy induced bone loss in vivo. Bone, 2010, 46, 1089-1099.	2.9	103
47	Pharmacologic inhibitors of lî® kinase suppress growth and migration of mammary carcinosarcoma cells <i>in vitro</i> and prevent osteolytic bone metastasis <i>in vivo</i> . Molecular Cancer Therapeutics, 2009, 8, 2339-2347.	4.1	94
48	Identification of Novel Biphenyl Carboxylic Acid Derivatives as Novel Antiresorptive Agents that Do Not Impair Parathyroid Hormone-Induced Bone Formation. Endocrinology, 2009, 150, 5-13.	2.8	14
49	The nitrosylated flurbiprofen derivative HCT1026 inhibits cytokine-induced signalling through a novel mechanism of action. European Journal of Pharmacology, 2009, 602, 215-222.	3 . 5	13
50	Cannabinoid Receptor Type 1 Protects against Age- Related Osteoporosis by Regulating Osteoblast and Adipocyte Differentiation in Marrow Stromal Cells. Cell Metabolism, 2009, 10, 139-147.	16.2	151
51	Î ² 2-Adrenoreceptor ligands regulate osteoclast differentiation in vitro by direct and indirect mechanisms. Archives of Biochemistry and Biophysics, 2009, 482, 96-103.	3.0	72
52	Aminobisphosphonates Cause Osteoblast Apoptosis and Inhibit Bone Nodule Formation In Vitro. Calcified Tissue International, 2008, 82, 191-201.	3.1	187
53	A novel profile analysis of metaphyseal trabecular bone reveals a biphasic dose-dependent response to administered bone active agents. Bone, 2008, 43, S19.	2.9	0
54	ABD56 causes osteoclast apoptosis by inhibiting the NFÎB and ERK pathways. Biochemical and Biophysical Research Communications, 2008, 371, 94-98.	2.1	17

AYMEN I IDRIS

#	Article	IF	CITATION
55	P52. The IKK inhibitors celastrol and parthenolide inhibit breast cancer cell proliferation and migration in vitro and osteolytic bone metastasis in vivo. Cancer Treatment Reviews, 2008, 34, 75.	7.7	2
56	Regulation of Bone Mass, Osteoclast Function, and Ovariectomy-Induced Bone Loss by the Type 2 Cannabinoid Receptor. Endocrinology, 2008, 149, 5619-5626.	2.8	134
57	Role of Cannabinoid Receptors in Bone Disorders: Alternatives for Treatment., 2008, 21, 533.		9
58	A Comparison between the Effects of Hydrophobic and Hydrophilic Statins on Osteoclast Function In Vitro and Ovariectomy-Induced Bone Loss In Vivo. Calcified Tissue International, 2007, 81, 403-413.	3.1	55
59	Development and Characterization of Biphenylsulfonamides as Novel Inhibitors of Bone Resorption. Journal of Medicinal Chemistry, 2006, 49, 7487-7492.	6.4	17
60	Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nature Medicine, 2005, 11, 774-779.	30.7	330
61	Identification of Biphenylcarboxylic Acid Derivatives as a Novel Class of Bone Resorption Inhibitors. Journal of Bone and Mineral Research, 2004, 19, 1651-1660.	2.8	17
62	The flurbiprofen derivatives HCT1026 and HCT1027 inhibit bone resorption by a mechanism independent of COX inhibition and nitric oxide production. Bone, 2004, 35, 636-643.	2.9	11