Yves Van de Peer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9253417/publications.pdf

Version: 2024-02-01

463 papers 75,605 citations

120 h-index 255 g-index

522 all docs 522 docs citations

times ranked

522

59221 citing authors

#	Article	IF	CITATIONS
1	PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002, 30, 325-327.	14.5	4,875
2	The Genome of Black Cottonwood, <i>Populus trichocarpa</i> (Torr. & Eamp; Gray). Science, 2006, 313, 1596-1604.	12.6	3,945
3	The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 2012, 485, 635-641.	27.8	2,860
4	The genome of the domesticated apple (Malus $ ilde{A}-$ domestica Borkh.). Nature Genetics, 2010, 42, 833-839.	21.4	1,891
5	The <i>Physcomitrella</i> Genome Reveals Evolutionary Insights into the Conquest of Land by Plants. Science, 2008, 319, 64-69.	12.6	1,712
6	The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 2008, 456, 239-244.	27.8	1,458
7	The Norway spruce genome sequence and conifer genome evolution. Nature, 2013, 497, 579-584.	27.8	1,303
8	The evolutionary significance of polyploidy. Nature Reviews Genetics, 2017, 18, 411-424.	16.3	1,288
9	The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature, 2011, 480, 520-524.	27.8	1,166
10	TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Bioinformatics, 1994, 10, 569-570.	4.1	1,150
11	Re-evaluating prokaryotic species. Nature Reviews Microbiology, 2005, 3, 733-739.	28.6	1,019
12	The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature, 2008, 452, 88-92.	27.8	1,003
13	A High Quality Draft Consensus Sequence of the Genome of a Heterozygous Grapevine Variety. PLoS ONE, 2007, 2, e1326.	2.5	945
14	From 2R to 3R: evidence for a fishâ€specific genome duplication (FSGD). BioEssays, 2005, 27, 937-945.	2.5	929
15	The evolutionary significance of ancient genome duplications. Nature Reviews Genetics, 2009, 10, 725-732.	16.3	919
16	The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 2011, 479, 487-492.	27.8	897
17	Modeling gene and genome duplications in eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5454-5459.	7.1	850
18	The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nature Genetics, 2011, 43, 476-481.	21.4	814

#	Article	IF	CITATIONS
19	Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11647-11652.	7.1	809
20	Genome Duplication, a Trait Shared by 22,000 Species of Ray-Finned Fish. Genome Research, 2003, 13, 382-390.	5.5	787
21	The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 2010, 465, 617-621.	27.8	774
22	Draft Genome Sequence of the Sexually Transmitted Pathogen <i>Trichomonas vaginalis</i> . Science, 2007, 315, 207-212.	12.6	731
23	The genome of Eucalyptus grandis. Nature, 2014, 510, 356-362.	27.8	725
24	zt : A Software Tool for Simple and Partial Mantel Tests. Journal of Statistical Software, 2002, 7, 1.	3.7	698
25	Genome-Wide Characterization of the Lignification Toolbox in Arabidopsis Â. Plant Physiology, 2003, 133, 1051-1071.	4.8	689
26	Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9166-9171.	7.1	640
27	Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience, 2017, 6, 1-11.	6.4	602
28	Green Evolution and Dynamic Adaptations Revealed by Genomes of the Marine Picoeukaryotes <i>Micromonas</i> . Science, 2009, 324, 268-272.	12.6	591
29	Polyploidy and genome evolution in plants. Current Opinion in Genetics and Development, 2015, 35, 119-125.	3.3	578
30	The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7705-7710.	7.1	563
31	Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5737-5742.	7.1	552
32	Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Research, 1992, 20, 2075-2089.	14.5	545
33	Compilation of small ribosomal subunit RNA structures. Nucleic Acids Research, 1993, 21, 3025-3049.	14.5	497
34	Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics, 2010, 26, 392-398.	4.1	494
35	Major events in the genome evolution of vertebrates: Paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1638-1643.	7.1	489
36	Genome duplication and the origin of angiosperms. Trends in Ecology and Evolution, 2005, 20, 591-597.	8.7	483

#	Article	IF	Citations
37	Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics, 2004, 20, 2911-2917.	4.1	480
38	The hidden duplication past of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13627-13632.	7.1	463
39	The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature, 2016, 530, 331-335.	27.8	460
40	PLAZA 4.0: an integrative resource for functional, evolutionary and comparative plant genomics. Nucleic Acids Research, 2018, 46, D1190-D1196.	14.5	460
41	Comparative genomics provides evidence for an ancient genome duplication event in fish. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 1661-1679.	4.0	450
42	Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature, 2013, 499, 209-213.	27.8	448
43	Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11511-11516.	7.1	427
44	Genome sequence of the recombinant protein production host Pichia pastoris. Nature Biotechnology, 2009, 27, 561-566.	17.5	422
45	Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nature Communications, 2014, 5, 4767.	12.8	421
46	The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization. Cell, 2018, 174, 448-464.e24.	28.9	420
47	The Mycobacterium tuberculosis regulatory network and hypoxia. Nature, 2013, 499, 178-183.	27.8	416
48	The genome sequence of the orchid Phalaenopsis equestris. Nature Genetics, 2015, 47, 65-72.	21.4	413
49	Robust Feature Selection Using Ensemble Feature Selection Techniques. Lecture Notes in Computer Science, 2008, , 313-325.	1.3	411
50	Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nature Plants, 2018, 4, 460-472.	9.3	391
51	Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous–Paleogene boundary. Genome Research, 2014, 24, 1334-1347.	5.5	381
52	TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics, 2010, 26, 1566-1568.	4.1	361
53	Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2898-2903.	7.1	351
54	The gain and loss of genes during 600 million years of vertebrate evolution. Genome Biology, 2006, 7, R43.	9.6	332

#	Article	IF	CITATIONS
55	PLAZA 3.0: an access point for plant comparative genomics. Nucleic Acids Research, 2015, 43, D974-D981.	14.5	329
56	Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell, 2021, 33, 11-26.	6.6	325
57	Targeted interactomics reveals a complex core cell cycle machinery in <i>Arabidopsis thaliana</i> Molecular Systems Biology, 2010, 6, 397.	7.2	315
58	The Apostasia genome and the evolution of orchids. Nature, 2017, 549, 379-383.	27.8	305
59	The Membrane-Bound NAC Transcription Factor ANACO13 Functions in Mitochondrial Retrograde Regulation of the Oxidative Stress Response in <i>Arabidopsis</i>	6.6	293
60	Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14959-14964.	7.1	286
61	The Plant Genome Integrative Explorer Resource: PlantGen <scp>IE</scp> .org. New Phytologist, 2015, 208, 1149-1156.	7.3	282
62	The flowering world: a tale of duplications. Trends in Plant Science, 2009, 14, 680-688.	8.8	277
63	The Determination and Comparison of the 16S rRNA Gene Sequences of Species of the Genus		

#	Article	IF	Citations
73	Evolutionary Relationships Among the Eukaryotic Crown Taxa Taking into Account Site-to-Site Rate Variation in 18S rRNA. Journal of Molecular Evolution, 1997, 45, 619-630.	1.8	231
74	The European database on small subunit ribosomal RNA. Nucleic Acids Research, 2002, 30, 183-185.	14.5	230
75	Genome-Wide Identification of Potential Plant E2F Target Genes. Plant Physiology, 2005, 139, 316-328.	4.8	229
76	Choose your partners: dimerization in eukaryotic transcription factors. Trends in Biochemical Sciences, 2008, 33, 220-229.	7.5	229
77	Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucleic Acids Research, 2003, 31, 4401-4409.	14.5	219
78	The European Small Subunit Ribosomal RNA database. Nucleic Acids Research, 2000, 28, 175-176.	14.5	215
79	Evidence That Rice and Other Cereals Are Ancient Aneuploids. Plant Cell, 2003, 15, 2192-2202.	6.6	212
80	Microsporidia: accumulating molecular evidence that a group of amitochondriate and suspectedly primitive eukaryotes are just curious fungi. Gene, 2000, 246, 1 -8.	2.2	204
81	The hornwort genome and early land plant evolution. Nature Plants, 2020, 6, 107-118.	9.3	203
82	Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms. Plant Cell, 2016, 28, 326-344.	6.6	202
83	Unraveling Transcriptional Control in Arabidopsis Using cis-Regulatory Elements and Coexpression Networks Â. Plant Physiology, 2009, 150, 535-546.	4.8	197
84	i-ADHoRe 3.0â€"fast and sensitive detection of genomic homology in extremely large data sets. Nucleic Acids Research, 2012, 40, e11-e11.	14.5	192
85	Comparative analysis of more than 3000 sequences reveals the existence of two pseudoknots in area V4 of eukaryotic small subunit ribosomal RNA. Nucleic Acids Research, 2000, 28, 4698-4708.	14.5	190
86	GOLVEN Secretory Peptides Regulate Auxin Carrier Turnover during Plant Gravitropic Responses. Developmental Cell, 2012, 22, 678-685.	7.0	182
87	Generic eukaryotic core promoter prediction using structural features of DNA. Genome Research, 2008, 18, 310-323.	5.5	181
88	And then there were many: MADS goes genomic. Trends in Plant Science, 2003, 8, 475-483.	8.8	179
89	TREECON: A software package for the construction and drawing of evolutionary trees. Bioinformatics, 1993, 9, 177-182.	4.1	177
90	ORCAE: online resource for community annotation of eukaryotes. Nature Methods, 2012, 9, 1041-1041.	19.0	176

#	Article	IF	CITATIONS
91	Database on the structure of small ribosomal subunit RNA. Nucleic Acids Research, 1994, 22, 3488-3494.	14.5	175
92	wgdâ€"simple command line tools for the analysis of ancient whole-genome duplications. Bioinformatics, 2019, 35, 2153-2155.	4.1	174
93	The Ghost of Selection Past: Rates of Evolution and Functional Divergence of Anciently Duplicated Genes. Journal of Molecular Evolution, 2001, 53, 436-446.	1.8	172
94	An ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens. BMC Evolutionary Biology, 2007, 7, 130.	3.2	171
95	Reannotation and extended community resources for the genome of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions. BMC Genomics, 2013, 14, 498.	2.8	170
96	Construction of evolutionary distance trees with TREECON for Windows: accounting for variation in nucleotide substitution rate among sites. Bioinformatics, 1997, 13, 227-230.	4.1	169
97	Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 7732-7736.	7.1	165
98	Contrasting Rates of Molecular Evolution and Patterns of Selection among Gymnosperms and Flowering Plants. Molecular Biology and Evolution, 2017, 34, 1363-1377.	8.9	164
99	Nonrandom divergence of gene expression following gene and genome duplications in the flowering plant Arabidopsis thaliana. Genome Biology, 2006, 7, R13.	9.6	163
100	The European Large Subunit Ribosomal RNA Database. Nucleic Acids Research, 2001, 29, 175-177.	14.5	160
101	Computational Approaches to Identify Promoters and cis-Regulatory Elements in Plant Genomes. Plant Physiology, 2003, 132, 1162-1176.	4.8	158
102	Genome duplication, divergent resolution and speciation. Trends in Genetics, 2001, 17, 299-301.	6.7	157
103	Globins in nonvertebrate species: dispersal by horizontal gene transfer and evolution of the structure-function relationships. Molecular Biology and Evolution, 1996, 13, 324-333.	8.9	154
104	Towards a prokaryotic genomic taxonomy. FEMS Microbiology Reviews, 2005, 29, 147-167.	8.6	152
105	The evolution of stramenopiles and alveolates as derived by "substitution rate calibration» of small ribosomal subunit RNA. Journal of Molecular Evolution, 1996, 42, 201-210.	1.8	151
106	Reciprocal Responses in the Interaction between Arabidopsis and the Cell-Content-Feeding Chelicerate Herbivore Spider Mite Â. Plant Physiology, 2014, 164, 384-399.	4.8	151
107	A genome for gnetophytes and early evolution of seed plants. Nature Plants, 2018, 4, 82-89.	9.3	151
108	Gene duplication and biased functional retention of paralogs in bacterial genomes. Trends in Microbiology, 2004, 12, 148-154.	7.7	150

#	Article	IF	Citations
109	A Comprehensive Analysis of Genes Encoding Small Secreted Proteins Identifies Candidate Effectors in <i>Melampsora larici-populina</i> (Poplar Leaf Rust). Molecular Plant-Microbe Interactions, 2012, 25, 279-293.	2.6	150
110	Computational approaches to unveiling ancient genome duplications. Nature Reviews Genetics, 2004, 5, 752-763.	16.3	146
111	Genomes of early-diverging streptophyte algae shed light on plant terrestrialization. Nature Plants, 2020, 6, 95-106.	9.3	146
112	Inference of Genome Duplications from Age Distributions Revisited. Molecular Biology and Evolution, 2013, 30, 177-190.	8.9	145
113	Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage. Genome Biology, 2012, 13, R74.	9.6	143
114	Tangled up in two: a burst of genome duplications at the end of the Cretaceous and the consequences for plant evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130353.	4.0	141
115	Global expression analysis of the brown alga Ectocarpus siliculosus (Phaeophyceae) reveals large-scale reprogramming of the transcriptome in response to abiotic stress. Genome Biology, 2009, 10, R66.	9.6	138
116	An Updated and Comprehensive rRNA Phylogeny of (Crown) Eukaryotes Based on Rate-Calibrated Evolutionary Distances. Journal of Molecular Evolution, 2000, 51, 565-576.	1.8	136
117	The small RNA world of plants. New Phytologist, 2006, 171, 451-468.	7. 3	136
118	Polyploidy: A Biological Force From Cells to Ecosystems. Trends in Cell Biology, 2020, 30, 688-694.	7.9	136
119	Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp. BMC Biology, 2021, 19, 1.	3.8	135
120	Insights into the Evolution of Multicellularity from the Sea Lettuce Genome. Current Biology, 2018, 28, 2921-2933.e5.	3.9	134
121	Distribution of substitution rates and location of insertion sites in the tertiary structure of ribosomal RNA. Nucleic Acids Research, 2001, 29, 5017-5028.	14.5	133
122	A Haploid System of Sex Determination in the Brown Alga Ectocarpus sp Current Biology, 2014, 24, 1945-1957.	3.9	131
123	EST data suggest that poplar is an ancient polyploid. New Phytologist, 2005, 167, 165-170.	7.3	128
124	The Automatic Detection of Homologous Regions (ADHoRe) and Its Application to Microcolinearity Between Arabidopsis and Rice. Genome Research, 2002, 12, 1792-1801.	5.5	127
125	Gamma Paleohexaploidy in the Stem Lineage of Core Eudicots: Significance for MADS-Box Gene and Species Diversification. Molecular Biology and Evolution, 2012, 29, 3793-3806.	8.9	127
126	Reconstructing evolution from eukaryotic small-ribosomal-subunit RNA sequences: Calibration of the molecular clock. Journal of Molecular Evolution, 1993, 37, 221-232.	1.8	126

#	Article	IF	Citations
127	GenomeView: a next-generation genome browser. Nucleic Acids Research, 2012, 40, e12-e12.	14.5	126
128	Genome-Wide Mapping of Structural Variations Reveals a Copy Number Variant That Determines Reproductive Morphology in Cucumber. Plant Cell, 2015, 27, 1595-1604.	6.6	125
129	Hydrogen Peroxide-Induced Gene Expression across Kingdoms: A Comparative Analysis. Molecular Biology and Evolution, 2008, 25, 507-516.	8.9	122
130	Towards a prokaryotic genomic taxonomy. FEMS Microbiology Reviews, 2005, 29, 147-167.	8.6	121
131	Database on the structure of large ribosomal subunit RNA. Nucleic Acids Research, 1996, 24, 92-97.	14.5	120
132	Predicting protein-protein interactions in Arabidopsis thaliana through integration of orthology, gene ontology and co-expression. BMC Genomics, 2009, 10, 288.	2.8	120
133	Redundancy and rewiring of genetic networks following genome-wide duplication events. Current Opinion in Plant Biology, 2012, 15, 168-176.	7.1	118
134	Deletions Involving Long-Range Conserved Nongenic Sequences Upstream and Downstream of FOXL2 as a Novel Disease-Causing Mechanism in Blepharophimosis Syndrome. American Journal of Human Genetics, 2005, 77, 205-218.	6.2	116
135	Systematic Structural Characterization of Metabolites in <i>Arabidopsis</i> via Candidate Substrate-Product Pair Networks Â. Plant Cell, 2014, 26, 929-945.	6.6	116
136	The evolutionary position of the rhodophytePorphyra umbilicalis and the basidiomyceteLeucosporidium scottii among other eukaryotes as deduced from complete sequences of small ribosomal subunit RNA. Journal of Molecular Evolution, 1991, 32, 167-177.	1.8	115
137	How many genes are there in plants (… and why are they there)?. Current Opinion in Plant Biology, 2007, 10, 199-203.	7.1	115
138	Genomewide Structural Annotation and Evolutionary Analysis of the Type I MADS-Box Genes in Plants. Journal of Molecular Evolution, 2003, 56, 573-586.	1.8	109
139	TRAPID: an efficient online tool for the functional and comparative analysis of de novo RNA-Seq transcriptomes. Genome Biology, 2013, 14, R134.	9.6	108
140	Genome of <i>Crucihimalaya himalaica</i> , a close relative of <i>Arabidopsis</i> , shows ecological adaptation to high altitude. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7137-7146.	7.1	108
141	The draft genomes of five agriculturally important African orphan crops. GigaScience, 2019, 8, .	6.4	108
142	The Complete Chloroplast and Mitochondrial DNA Sequence of Ostreococcus tauri: Organelle Genomes of the Smallest Eukaryote Are Examples of Compaction. Molecular Biology and Evolution, 2007, 24, 956-968.	8.9	106
143	The (r)evolution of gene regulatory networks controlling Arabidopsis plant reproduction: a two-decade history. Journal of Experimental Botany, 2014, 65, 4731-4745.	4.8	106
144	Large-scale structural analysis of the core promoter in mammalian and plant genomes. Nucleic Acids Research, 2005, 33, 4255-4264.	14.5	103

#	Article	lF	CITATIONS
145	Moss transcriptome and beyond. Trends in Plant Science, 2002, 7, 535-538.	8.8	102
146	Genome Annotation in Plants and Fungi: EuGene as a Model Platform. Current Bioinformatics, 2008, 3, 87-97.	1.5	102
147	Comparative genomics of the pathogenic ciliate Ichthyophthirius multifiliis, its free-living relatives and a host species provide insights into adoption of a parasitic lifestyle and prospects for disease control. Genome Biology, 2011, 12, R100.	9.6	102
148	Comparative Network Analysis Reveals That Tissue Specificity and Gene Function Are Important Factors Influencing the Mode of Expression Evolution in Arabidopsis and Rice Â. Plant Physiology, 2011, 156, 1316-1330.	4.8	100
149	Molecular Genealogy of Some Nematode Taxa as Based on Cytochrome c and Globin Amino Acid Sequences. Molecular Phylogenetics and Evolution, 1994, 3, 92-101.	2.7	99
150	Database on the structure of large subunit ribosomal RNA. Nucleic Acids Research, 1999, 27, 174-178.	14.5	99
151	Canalization without flux sensors: a traveling-wave hypothesis. Trends in Plant Science, 2007, 12, 384-390.	8.8	98
152	The Global Invertebrate Genomics Alliance (GIGA): Developing Community Resources to Study Diverse Invertebrate Genomes. Journal of Heredity, 2014, 105, 1-18.	2.4	96
153	The biosynthetic gene cluster for sophorolipids: a biotechnological interesting biosurfactant produced by <i><scp>S</scp>tarmerella bombicola</i> Molecular Microbiology, 2013, 88, 501-509.	2.5	94
154	Feature subset selection for splice site prediction. Bioinformatics, 2002, 18, S75-S83.	4.1	93
155	CoExpNetViz: Comparative Co-Expression Networks Construction and Visualization Tool. Frontiers in Plant Science, 2015, 6, 1194.	3 . 6	93
156	Database on the structure of large ribosomal subunit RNA. Nucleic Acids Research, 1994, 22, 3495-3501.	14.5	92
157	SpliceMachine: predicting splice sites from high-dimensional local context representations. Bioinformatics, 2005, 21, 1332-1338.	4.1	92
158	Genome-wide analysis of the diatom cell cycle unveils a novel type of cyclins involved in environmental signaling. Genome Biology, 2010, 11, R17.	9.6	91
159	Journey through the past: 150 million years of plant genome evolution. Plant Journal, 2011, 66, 58-65.	5.7	91
160	The Nucleotide Sequence of the Small Ribosomal Subunit RNA of the Yeast Candida albicans and the Evolutionary Position of the Fungi among the Eukaryotes. Systematic and Applied Microbiology, 1989, 12, 223-229.	2.8	90
161	Overview of tomato (<i>Solanum lycopersicum</i>) candidate pathogen recognition genes reveals important <i>Solanum</i> R locus dynamics. New Phytologist, 2013, 197, 223-237.	7.3	90
162	An improved genome of the model marine alga Ostreococcus tauri unfolds by assessing Illumina de novo assemblies. BMC Genomics, 2014, 15, 1103.	2.8	90

#	Article	IF	Citations
163	Chromosome-level genome assembly of a parent species of widely cultivated azaleas. Nature Communications, 2020, 11, 5269.	12.8	90
164	Evolutionary Relationships Among Higher Fungi Inferred from Small Ribosomal Subunit RNA Sequence Analysis. Systematic and Applied Microbiology, 1993, 16, 436-444.	2.8	87
165	picoâ€< scp>PLAZA, a genome database of microbial photosynthetic eukaryotes. Environmental Microbiology, 2013, 15, 2147-2153.	3.8	87
166	The gene coding for small ribosomal subunit RNA in the basidiomyceteUstilago maydiscontains a group I intron. Nucleic Acids Research, 1992, 20, 1251-1257.	14.5	85
167	Evolution according to large tribosomal subunit RNA. Journal of Molecular Evolution, 1995, 41, 366-375.	1.8	85
168	Database on the structure of small subunit ribosomal RNA. Nucleic Acids Research, 1999, 27, 179-183.	14.5	84
169	Lack of GLYCOLATE OXIDASE1, but Not GLYCOLATE OXIDASE2, Attenuates the Photorespiratory Phenotype of CATALASE2-Deficient Arabidopsis. Plant Physiology, 2016, 171, 1704-1719.	4.8	84
170	Functional and evolutionary genomic inferences in <i>Populus</i> through genome and population sequencing of American and European aspen. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10970-E10978.	7.1	84
171	The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nature Ecology and Evolution, 2020, 4, 1220-1231.	7.8	84
172	Phylogenetic Analysis of the SSU rRNA from Members of the Chrysophyceae. Protist, 1999, 150, 71-84.	1.5	83
173	Large-Scale Event Extraction from Literature with Multi-Level Gene Normalization. PLoS ONE, 2013, 8, e55814.	2.5	83
174	Module networks revisited: computational assessment and prioritization of model predictions. Bioinformatics, 2009, 25, 490-496.	4.1	82
175	Reciprocally Retained Genes in the Angiosperm Lineage Show the Hallmarks of Dosage Balance Sensitivity. Plant Cell, 2017, 29, 2766-2785.	6.6	81
176	Evolution according to large ribosomal subunit RNA. Journal of Molecular Evolution, 1995, 41, 366-375.	1.8	80
177	The Litsea genome and the evolution of the laurel family. Nature Communications, 2020, 11 , 1675 .	12.8	80
178	The Cycas genome and the early evolution of seed plants. Nature Plants, 2022, 8, 389-401.	9.3	80
179	<i>Arabidopsis</i> Ensemble Reverse-Engineered Gene Regulatory Network Discloses Interconnected Transcription Factors in Oxidative Stress. Plant Cell, 2015, 26, 4656-4679.	6.6	79
180	Horsetails Are Ancient Polyploids: Evidence from <i>Equisetum giganteum</i> . Plant Cell, 2015, 27, 1567-1578.	6.6	78

#	Article	IF	Citations
181	Phylogenetic analysis of ten black yeast species using nuclear small subunit rRNA gene sequences. Antonie Van Leeuwenhoek, 1995, 68, 19-33.	1.7	77
182	Integrative Genomic Analysis Implicates Gain of <i>PIK3CA</i> at 3q26 and <i>MYC</i> at 8q24 in Chronic Lymphocytic Leukemia. Clinical Cancer Research, 2012, 18, 3791-3802.	7.0	76
183	Pseudo-chromosome–length genome assembly of a double haploid "Bartlett―pear (Pyrus communis L.). GigaScience, 2019, 8, .	6.4	76
184	Microarray analysis of E2Fa-DPa-overexpressing plants uncovers a cross-talking genetic network between DNA replication and nitrogen assimilation. Journal of Cell Science, 2003, 116, 4249-4259.	2.0	75
185	ProSOM: core promoter prediction based on unsupervised clustering of DNA physical profiles. Bioinformatics, 2008, 24, i24-i31.	4.1	7 5
186	Single-Copy Genes as Molecular Markers for Phylogenomic Studies in Seed Plants. Genome Biology and Evolution, 2017, 9, 1130-1147.	2.5	75
187	Distinct Expression and Methylation Patterns for Genes with Different Fates following a Single Whole-Genome Duplication in Flowering Plants. Molecular Biology and Evolution, 2020, 37, 2394-2413.	8.9	75
188	Database on the structure of small ribosomal subunit RNA. Nucleic Acids Research, 1996, 24, 86-91.	14.5	73
189	A Snapshot of the Emerging Tomato Genome Sequence. Plant Genome, 2009, 2, .	2.8	7 3
190	Revisiting ancestral polyploidy in plants. Science Advances, 2017, 3, e1603195.	10.3	73
191	Phylogenetic Relationships among Ascomycetes and Ascomycete-like Yeasts as Deduced from Small Ribosomal Subunit RNA Sequences. Systematic and Applied Microbiology, 1992, 15, 98-104.	2.8	72
192	Are all fishes ancient polyploids?. Journal of Structural and Functional Genomics, 2003, 3, 65-73.	1.2	71
193	Expanding the repertoire of secretory peptides controlling root development with comparative genome analysis and functional assays. Journal of Experimental Botany, 2015, 66, 5257-5269.	4.8	71
194	Small ribosomal subunit RNA sequences, evolutionary relationships among different life forms, and mitochondrial origins. Journal of Molecular Evolution, 1990, 30, 463-476.	1.8	70
195	Decoding Plant and Animal Genome Plasticity from Differential Paleo-Evolutionary Patterns and Processes. Genome Biology and Evolution, 2012, 4, 917-928.	2.5	69
196	TAXONOMIC STUDY OF MARINE OSCILLATORIACEAN STRAINS (CYANOBACTERIA) WITH NARROW TRICHOMES. II. NUCLEOTIDE SEQUENCE ANALYSIS OF THE 16S RIBOSOMAL RNA1. Journal of Phycology, 1992, 28, 828-838.	2.3	68
197	hfAIM: A reliable bioinformatics approach for in silico genome-wide identification of autophagy-associated Atg8-interacting motifs in various organisms. Autophagy, 2016, 12, 876-887.	9.1	68
198	The honeysuckle genome provides insight into the molecular mechanism of carotenoid metabolism underlying dynamic flower coloration. New Phytologist, 2020, 227, 930-943.	7. 3	68

#	Article	IF	CITATIONS
199	Jabba: hybrid error correction for long sequencing reads. Algorithms for Molecular Biology, 2016, 11, 10.	1.2	67
200	Development and implementation of a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine. BMC Genomics, 2011, 12, 368.	2.8	66
201	Metazoan Relationships on the Basis of 18S rRNA Sequences: A Few Years Later…. American Zoologist, 1998, 38, 888-906.	0.7	65
202	Posttranslational regulation impacts the fate of duplicated genes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2967-2971.	7.1	65
203	Reâ€annotation, improved largeâ€scale assembly and establishment of a catalogue of noncoding loci for the genome of the model brown alga <i>Ectocarpus</i> . New Phytologist, 2017, 214, 219-232.	7.3	65
204	Inference of Ancient Whole-Genome Duplications and the Evolution of Gene Duplication and Loss Rates. Molecular Biology and Evolution, 2019, 36, 1384-1404.	8.9	65
205	Genome-Wide Analysis of Core Cell Cycle Genes in the Unicellular Green Alga Ostreococcus tauri. Molecular Biology and Evolution, 2005, 22, 589-597.	8.9	64
206	Of dups and dinos: evolution at the K/Pg boundary. Current Opinion in Plant Biology, 2016, 30, 62-69.	7.1	64
207	Polyploid Arabidopsis species originated around recent glaciation maxima. Current Opinion in Plant Biology, 2018, 42, 8-15.	7.1	64
208	Novel Insights into Evolution of Protistan Polyketide Synthases through Phylogenomic Analysis. Protist, 2008, 159, 21-30.	1.5	63
209	Toward a gold standard for promoter prediction evaluation. Bioinformatics, 2009, 25, i313-i320.	4.1	63
210	Genome-Wide Analysis Reveals Diverged Patterns of Codon Bias, Gene Expression, and Rates of Sequence Evolution in Picea Gene Families. Genome Biology and Evolution, 2015, 7, 1002-1015.	2.5	63
211	Dealing with saturation at the amino acid level: a case study based on anciently duplicated zebrafish genes. Gene, 2002, 295, 205-211.	2.2	62
212	Building Genomic Profiles for Uncovering Segmental Homology in the Twilight Zone. Genome Research, 2004, 14, 1095-1106.	5.5	62
213	Tetraodon genome confirms Takifugu findings: most fish are ancient polyploids. Genome Biology, 2004, 5, 250.	9.6	62
214	Functional divergence of proteins through frameshift mutations. Trends in Genetics, 2005, 21, 428-431.	6.7	61
215	In situ analysis of cross-hybridisation on microarrays and the inference of expression correlation. BMC Bioinformatics, 2007, 8, 461.	2.6	61
216	A review of estimation of distribution algorithms in bioinformatics. BioData Mining, 2008, 1, 6.	4.0	61

#	Article	IF	CITATIONS
217	AGRONOMICS1: A New Resource for Arabidopsis Transcriptome Profiling Â. Plant Physiology, 2010, 152, 487-499.	4.8	61
218	Comparative Metagenomic Analysis Reveals Mechanisms for Stress Response in Hypoliths from Extreme Hyperarid Deserts. Genome Biology and Evolution, 2016, 8, 2737-2747.	2.5	61
219	Gene cluster conservation provides insight into cercosporin biosynthesis and extends production to the genus <i>Colletotrichum </i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5459-E5466.	7.1	61
220	Evolution of Basidiomycetous Yeasts as Deduced from Small Ribosomal Subunit RNA Sequences. Systematic and Applied Microbiology, 1992, 15, 250-258.	2.8	60
221	The emergence and evolution of intronâ€poor and intronless genes in intronâ€rich plant gene families. Plant Journal, 2021, 105, 1072-1082.	5.7	60
222	The FTO Gene, Implicated in Human Obesity, Is Found Only in Vertebrates and Marine Algae. Journal of Molecular Evolution, 2008, 66, 80-84.	1.8	59
223	Analysis of a Gibbs sampler method for model-based clustering of gene expression data. Bioinformatics, 2008, 24, 176-183.	4.1	59
224	Angiosperm polyploids and their road to evolutionary success. Trends in Evolutionary Biology, 2010, 2, 3.	0.4	57
225	About the Order of Divergence of the Major Bacterial Taxa During Evolution. Systematic and Applied Microbiology, 1994, 17, 32-38.	2.8	56
226	The European Large Subunit Ribosomal RNA database. Nucleic Acids Research, 2000, 28, 177-178.	14.5	55
227	Identification of novel regulatory modules in dicotyledonous plants using expression data and comparative genomics. Genome Biology, 2006, 7, R103.	9.6	55
228	Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks. BMC Systems Biology, 2009, 3, 49.	3.0	55
229	Network-based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1195-1200.	7.1	55
230	A Transgenic Mouse Marking Live Replicating Cells Reveals InÂVivo Transcriptional Program of Proliferation. Developmental Cell, 2012, 23, 681-690.	7.0	54
231	The phylogeny of the Hyphochytriomycota as deduced from ribosomal RNA sequences of Hyphochytrium catenoides Molecular Biology and Evolution, 1995, 12, 671-8.	8.9	53
232	18S Ribosomal Rna Genes of Insects: Primary Structure of the Genes and Molecular Phylogeny of the Holometabola. Annals of the Entomological Society of America, 1996, 89, 788-803.	2.5	53
233	Whole-genome analysis reveals molecular innovations and evolutionary transitions in chromalveolate species. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3427-3432.	7.1	53
234	2R or not 2R is not the question anymore. Nature Reviews Genetics, 2010, 11, 166-166.	16.3	53

#	Article	IF	CITATIONS
235	Whole-genome microsynteny-based phylogeny of angiosperms. Nature Communications, 2021, 12, 3498.	12.8	53
236	Primary and secondary structure of the 18S ribosomal RNA of the bird spider Eurypelma californica and evolutionary relationships among eukaryotic phyla. FEBS Journal, 1988, 177, 15-20.	0.2	53
237	Revisiting recent challenges to the ancient fish-specific genome duplication hypothesis. Current Biology, 2001, 11, R1005-R1007.	3.9	52
238	Investigating ancient duplication events in the Arabidopsis genome. Journal of Structural and Functional Genomics, 2003, 3, 117-129.	1.2	52
239	Fast feature selection using a simple estimation of distribution algorithm: a case study on splice site prediction. Bioinformatics, 2003, 19, ii179-ii188.	4.1	51
240	The Welwitschia genome reveals aÂunique biology underpinning extreme longevity in deserts. Nature Communications, 2021, 12, 4247.	12.8	51
241	Detecting the undetectable: uncovering duplicated segments in Arabidopsis by comparison with rice. Trends in Genetics, 2002, 18, 606-608.	6.7	50
242	Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts. Scientific Reports, 2015, 5, 11571.	3.3	50
243	Molecular phylogeny of part of the env gene of HIV-1 strains isolated in Côte d'lvoire. Aids, 1994, 8, 21-26.	2.2	49
244	Construction of a variability map for eukaryotic large subunit ribosomal RNA. Nucleic Acids Research, 1999, 27, 2825-2831.	14.5	49
245	Feature selection for splice site prediction: a new method using EDA-based feature ranking. BMC Bioinformatics, 2004, 5, 64.	2.6	49
246	Systems genetics reveals a transcriptional network associated with susceptibility in the maize–grey leaf spot pathosystem. Plant Journal, 2017, 89, 746-763.	5.7	49
247	Evaluation of the impact of Illumina error correction tools on de novo genome assembly. BMC Bioinformatics, 2017, 18, 374.	2.6	49
248	Translation initiation site prediction on a genomic scale: beauty in simplicity. Bioinformatics, 2007, 23, i418-i423.	4.1	48
249	The evolution of gene duplicates in angiosperms and the impact of protein-protein interactions and the mechanism of duplication. Genome Biology and Evolution, 2019, 11, 2292-2305.	2.5	48
250	Comparative phenomics and targeted use of genomics reveals variation in carbon and nitrogen assimilation among different Brettanomyces bruxellensis strains. Applied Microbiology and Biotechnology, 2015, 99, 9123-9134.	3.6	47
251	A multi-omics analysis of the grapevine pathogen Lasiodiplodia theobromae reveals that temperature affects the expression of virulence- and pathogenicity-related genes. Scientific Reports, 2019, 9, 13144.	3.3	47
252	The evolutionary origin and domestication history of goldfish (<i>Carassius auratus </i>). Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29775-29785.	7.1	47

#	Article	IF	Citations
253	Module Network Inference from a Cancer Gene Expression Data Set Identifies MicroRNA Regulated Modules. PLoS ONE, 2010, 5, e10162.	2.5	46
254	Exoproteome analysis of Starmerella bombicola results in the discovery of an esterase required for lactonization of sophorolipids. Journal of Proteomics, 2014, 98, 159-174.	2.4	46
255	Coordinated Functional Divergence of Genes after Genome Duplication in <i>Arabidopsis thaliana</i> Plant Cell, 2017, 29, 2786-2800.	6.6	46
256	How Molecules Evolve in Eubacteria. Molecular Biology and Evolution, 2000, 17, 835-838.	8.9	45
257	i-ADHoRe 2.0: an improved tool to detect degenerated genomic homology using genomic profiles. Bioinformatics, 2008, 24, 127-128.	4.1	44
258	Evaluation and Properties of the Budding Yeast Phosphoproteome. Molecular and Cellular Proteomics, 2012, 11, M111.009555.	3.8	44
259	Ancient duplication of cereal genomes. New Phytologist, 2005, 165, 658-661.	7.3	43
260	Evolutionary history and pan-genome dynamics of strawberry (<i>Fragaria </i> spp.). Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	43
261	AFLPinSilico, simulating AFLP fingerprints. Bioinformatics, 2003, 19, 776-777.	4.1	42
262	Promoter Analysis of MADS-Box Genes in Eudicots Through Phylogenetic Footprinting. Molecular Biology and Evolution, 2006, 23, 1293-1303.	8.9	42
263	<i>Candida bombicola</i> as a platform organism for the production of tailorâ€made biomolecules. Biotechnology and Bioengineering, 2013, 110, 2494-2503.	3.3	42
264	Complex Evolutionary Dynamics of Massively Expanded Chemosensory Receptor Families in an Extreme Generalist Chelicerate Herbivore. Genome Biology and Evolution, 2016, 8, 3323-3339.	2.5	42
265	Exploring the Plant Transcriptome through Phylogenetic Profiling Â. Plant Physiology, 2005, 137, 31-42.	4.8	41
266	Higher Intron Loss Rate in Arabidopsis thaliana Than A. lyrata Is Consistent with Stronger Selection for a Smaller Genome. Molecular Biology and Evolution, 2012, 29, 849-859.	8.9	41
267	The gene expression landscape of pine seedling tissues. Plant Journal, 2017, 91, 1064-1087.	5.7	41
268	Sequencing and Analyzing the Transcriptomes of a Thousand Species Across the Tree of Life for Green Plants. Annual Review of Plant Biology, 2020, 71, 741-765.	18.7	41
269	The 5S ribosomal RNA sequences of a red algal rhodoplast and a gymnosperm chloroplast. Implications for the evolution of plastids and cyanobacteria. Journal of Molecular Evolution, 1988, 27, 126-132.	1.8	40
270	Evolutionary Relationships among Heterokont Algae (the Autotrophic Stramenopiles) Based on Combined Analyses of Small and Large Subunit Ribosomal RNA. Protist, 2002, 153, 123-132.	1.5	40

#	Article	IF	Citations
271	In search of the small ones: improved prediction of short exons in vertebrates, plants, fungi and protists. Bioinformatics, 2007, 23, 414-420.	4.1	40
272	A mystery unveiled. Genome Biology, 2011, 12, 113.	9.6	40
273	Polyploidy breaks speciation barriers in Australian burrowing frogs Neobatrachus. PLoS Genetics, 2020, 16, e1008769.	3.5	40
274	Wolfberry genomes and the evolution of LyciumÂ(Solanaceae). Communications Biology, 2021, 4, 671.	4.4	40
275	Wanda: a database of duplicated fish genes. Nucleic Acids Research, 2002, 30, 109-112.	14.5	39
276	Evolution and taxonomic distribution of nonribosomal peptide and polyketide synthases. Future Microbiology, 2008, 3, 361-370.	2.0	39
277	Structure of 16S and 23S Ribosomal RNA Genes in Campylobacter Species: Phylogenetic Analysis of the Genus Campylobacter and Presence of Internal Transcribed Spacers. Systematic and Applied Microbiology, 1993, 16, 361-368.	2.8	38
278	Deconstruction of the (Paleo)Polyploid Grapevine Genome Based on the Analysis of Transposition Events Involving NBS Resistance Genes. PLoS ONE, 2012, 7, e29762.	2.5	38
279	Draft genome of Cercospora zeina, Fusarium pininemorale, Hawksworthiomyces lignivorus, Huntiella decipiens and Ophiostoma ips. IMA Fungus, 2017, 8, 385-396.	3 . 8	37
280	Genome sequence of <i> Malania oleifera < /i >, a tree with great value for nervonic acid production. GigaScience, 2019, 8, .</i>	6.4	36
281	Divergent members of the bacterial division Verrucomicrobiales in a temperate freshwater lake. FEMS Microbiology Ecology, 1998, 25, 159-169.	2.7	36
282	Evidence for an ancient whole genome duplication in the cycad lineage. PLoS ONE, 2017, 12, e0184454.	2.5	36
283	Genomes of leafy and leafless Platanthera orchids illuminate the evolution of mycoheterotrophy. Nature Plants, 2022, 8, 373-388.	9.3	36
284	Evolution of green plants and their relationship with other photosynthetic eukaryotes as deduced from 5S ribosomal RNA sequences. Plant Systematics and Evolution, 1990, 170, 85-96.	0.9	35
285	Database on the structure of large ribosomal subunit RNA. Nucleic Acids Research, 1998, 26, 183-186.	14.5	35
286	Exploring Biomolecular Literature with EVEX: Connecting Genes through Events, Homology, and Indirect Associations. Advances in Bioinformatics, 2012, 2012, 1-12.	5.7	35
287	Are all fishes ancient polyploids?. Journal of Structural and Functional Genomics, 2003, 3, 65-73.	1,2	35
288	Validating module network learning algorithms using simulated data. BMC Bioinformatics, 2007, 8, S5.	2.6	34

#	Article	IF	Citations
289	Significance and Biological Consequences of Polyploidization in Land Plant Evolution. , 2013, , 277-293.		34
290	Conservation of Nonsense-Mediated mRNA Decay Complex Components Throughout Eukaryotic Evolution. Scientific Reports, 2017, 7, 16692.	3.3	34
291	First draft genome assembly of the desert locust, Schistocerca gregaria. F1000Research, 2020, 9, 775.	1.6	34
292	The 18S ribosomal RNA sequence of the sea anemone Ammonia sulcata and its evolutionary position among other eukaryotes. FEBS Letters, 1990, 269, 445-449.	2.8	33
293	Structure of the small ribosomal subunit RNA of the pulmonate snail,Limicolaria kambeul, and phylogenetic analysis of the Metazoa. FEBS Letters, 1992, 309, 123-126.	2.8	33
294	Evolution of eukaryotes as deduced from small ribosomal subunit RNA sequences. Biochemical Systematics and Ecology, 1993, 21, 43-55.	1.3	33
295	MANTIS: a phylogenetic framework for multi-species genome comparisons. Bioinformatics, 2008, 24, 151-157.	4.1	33
296	The hidden duplication past of the plant pathogen Phytophthora and its consequences for infection. BMC Genomics, 2010, 11, 353.	2.8	33
297	Function, dynamics and evolution of network motif modules in integrated gene regulatory networks of worm and plant. Nucleic Acids Research, 2018, 46, 6480-6503.	14.5	33
298	Genome streamlining in a minute herbivore that manipulates its host plant. ELife, 2020, 9, .	6.0	33
299	The Cymbidium genome reveals the evolution of unique morphological traits. Horticulture Research, 2021, 8, 255.	6.3	33
300	Investigating ancient duplication events in the Arabidopsis genome. Journal of Structural and Functional Genomics, 2003, 3, 117-29.	1.2	32
301	An Improved Statistical Method for Detecting Heterotachy in Nucleotide Sequences. Molecular Biology and Evolution, 2006, 23, 1397-1405.	8.9	31
302	Meta Analysis of Gene Expression Data within and Across Species. Current Genomics, 2008, 9, 525-534.	1.6	31
303	Haplotype-resolved genome assembly and allele-specific gene expression in cultivated ginger. Horticulture Research, 2021, 8, 188.	6.3	31
304	Database on the structure of large ribosomal subunit RNA. Nucleic Acids Research, 1997, 25, 117-122.	14.5	30
305	Analysis of the Evolutionary Relationships of HIV-1 and SIVcpz Sequences Using Bayesian Inference: Implications for the Origin of HIV-1. Molecular Biology and Evolution, 2003, 20, 1986-1996.	8.9	30
306	Prediction of a gene regulatory network linked to prostate cancer from gene expression, microRNA and clinical data. Bioinformatics, 2010, 26, i638-i644.	4.1	30

#	Article	IF	Citations
307	RNA-sequencing of Cercospora beticola DMI-sensitive and -resistant isolates after treatment with tetraconazole identifies common and contrasting pathway induction. Fungal Genetics and Biology, 2016, 92, 1-13.	2.1	30
308	Diffany: an ontology-driven framework to infer, visualise and analyse differential molecular networks. BMC Bioinformatics, 2016, 17, 18.	2.6	30
309	Using digital organisms to study the evolutionary consequences of whole genome duplication and polyploidy. PLoS ONE, 2019, 14, e0220257.	2.5	30
310	Draft Genomes of Two Artocarpus Plants, Jackfruit (A. heterophyllus) and Breadfruit (A. altilis). Genes, 2020, 11, 27.	2.4	30
311	Virus-host coexistence in phytoplankton through the genomic lens. Science Advances, 2020, 6, eaay2587.	10.3	30
312	A chromosomeâ€level <i>Amaranthus cruentus</i> genome assembly highlights gene family evolution and biosynthetic gene clusters that may underpin the nutritional value of this traditional crop. Plant Journal, 2021, 107, 613-628.	5.7	30
313	The Neighborhood of the Spike Gene Is a Hotspot for Modular Intertypic Homologous and Nonhomologous Recombination in Coronavirus Genomes. Molecular Biology and Evolution, 2022, 39, .	8.9	30
314	Reshuffling of the ancestral core-eudicot genome shaped chromatin topology and epigenetic modification in Panax. Nature Communications, 2022, 13, 1902.	12.8	30
315	The First Green Lineage cdc25 Dual-Specificity Phosphatase. Cell Cycle, 2004, 3, 511-516.	2.6	29
316	Discriminative and informative features for biomolecular text mining with ensemble feature selection. Bioinformatics, 2010, 26, i554-i560.	4.1	29
317	Comparative in silicoanalysis of EST-SSRs in angiosperm and gymnosperm tree genera. BMC Plant Biology, 2014, 14, 220.	3.6	29
318	Gene duplication, the evolution of novel gene functions, and detecting functional divergence of duplicates in silico. Applied Bioinformatics, 2003, 2, 91-101.	1.6	29
319	The Complex Intron Landscape and Massive Intron Invasion in a Picoeukaryote Provides Insights into Intron Evolution. Genome Biology and Evolution, 2013, 5, 2393-2401.	2.5	28
320	Network Modeling Unravels Mechanisms of Crosstalk between Ethylene and Salicylate Signaling in Potato. Plant Physiology, 2018, 178, 488-499.	4.8	28
321	Small RNA profiling in Pinus pinaster reveals the transcriptome of developing seeds and highlights differences between zygotic and somatic embryos. Scientific Reports, 2019, 9, 11327.	3.3	28
322	Dual RNA Sequencing of Vitis vinifera during Lasiodiplodia theobromae Infection Unveils Host–Pathogen Interactions. International Journal of Molecular Sciences, 2019, 20, 6083.	4.1	28
323	The evolutionary conundrum of wholeâ€genome duplication. American Journal of Botany, 2020, 107, 1101-1105.	1.7	28
324	Serendipitous Meta-Transcriptomics: The Fungal Community of Norway Spruce (Picea abies). PLoS ONE, 2015, 10, e0139080.	2.5	27

#	Article	IF	CITATIONS
325	Chromosome-scale assembly and evolution of the tetraploid Salvia splendens (Lamiaceae) genome. Horticulture Research, 2021, 8, 177.	6.3	27
326	Investigating ancient duplication events in the Arabidopsis genome., 2003,, 117-129.		27
327	Peakbin Selection in Mass Spectrometry Data Using a Consensus Approach with Estimation of Distribution Algorithms. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8, 760-774.	3.0	26
328	Draft Genome Assembly of the Poultry Red Mite, <i>Dermanyssus gallinae</i> Announcements, 2018, 7, .	0.6	26
329	Finding Evidence for Whole Genome Duplications: A Reappraisal. Molecular Plant, 2019, 12, 133-136.	8.3	26
330	Improved chromosome-level genome assembly and annotation of the seagrass, Zostera marina (eelgrass). F1000Research, 2021, 10, 289.	1.6	26
331	A Model-Based Approach to Study Nearest-Neighbor Influences Reveals Complex Substitution Patterns in Non-coding Sequences. Systematic Biology, 2008, 57, 675-692.	5.6	25
332	The Potential of Text Mining in Data Integration and Network Biology for Plant Research: A Case Study on <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 794-807.	6.6	25
333	A greedy, graph-based algorithm for the alignment of multiple homologous gene lists. Bioinformatics, 2011, 27, 749-756.	4.1	24
334	Phylogenetic analyses suggest lateral gene transfer from the mitochondrion to the apicoplast. Gene, 2002, 285, 109-118.	2.2	23
335	Transcription regulatory networks in Caenorhabditis elegans inferred through reverse-engineering of gene expression profiles constitute biological hypotheses for metazoan development. Molecular BioSystems, 2009, 5, 1817.	2.9	23
336	Structural and functional organization of RNA regulons in the post-transcriptional regulatory network of yeast. Nucleic Acids Research, 2011, 39, 9108-9117.	14.5	23
337	Orthology <scp>G</scp> uided <scp>A</scp> ssembly in highly heterozygous crops: creating a reference transcriptome to uncover genetic diversity in <i><scp>L</scp>olium perenne</i> . Plant Biotechnology Journal, 2013, 11, 605-617.	8.3	23
338	The †TranSeq' 3â€2â€end sequencing method for highâ€throughput transcriptomics and gene space refiner in plant genomes. Plant Journal, 2018, 96, 223-232.	ment 5.7	23
339	Illumina error correction near highly repetitive DNA regions improves de novo genome assembly. BMC Bioinformatics, 2019, 20, 298.	2.6	23
340	Genome sequence and genetic diversity analysis of an under-domesticated orphan crop, white fonio ($\langle i \rangle$ Digitaria exilis $\langle i \rangle$). GigaScience, 2021, 10, .	6.4	23
341	Recent developments in computational approaches for uncovering genomic homology. BioEssays, 2004, 26, 1225-1235.	2.5	22
342	SILAC-Based Proteome Analysis of <i>Starmerella bombicola</i> Sophorolipid Production. Journal of Proteome Research, 2013, 12, 4376-4392.	3.7	22

#	Article	IF	Citations
343	A Cytoscape app for motif enumeration with ISMAGS. Bioinformatics, 2017, 33, 461-463.	4.1	22
344	BrownieAligner: accurate alignment of Illumina sequencing data to de Bruijn graphs. BMC Bioinformatics, 2018, 19, 311.	2.6	22
345	Unique Regulation of the Calvin Cycle in the Ultrasmall Green Alga Ostreococcus. Journal of Molecular Evolution, 2007, 64, 601-604.	1.8	21
346	Exploration of alternative splicing events in ten different grapevine cultivars. BMC Genomics, 2015, 16, 706.	2.8	21
347	The Seagrass Methylome Is Associated With Variation in Photosynthetic Performance Among Clonal Shoots. Frontiers in Plant Science, 2020, 11, 571646.	3.6	21
348	Genomeâ€wide analysis of butterfly bush (<i>Buddleja alternifolia</i>) in three uplands provides insights into biogeography, demography and speciation. New Phytologist, 2021, 232, 1463-1476.	7.3	21
349	miRNA profiling in leaf and cork tissues of Quercus suber reveals novel miRNAs and tissue-specific expression patterns. Tree Genetics and Genomes, 2014, 10, 721-737.	1.6	20
350	Cell line name recognition in support of the identification of synthetic lethality in cancer from text. Bioinformatics, 2016, 32, 276-282.	4.1	20
351	Loss of Wood Formation Genes in Monocot Genomes. Genome Biology and Evolution, 2019, 11, 1986-1996.	2.5	20
352	The genome of the extremophile Artemia provides insight into strategies to cope with extreme environments. BMC Genomics, 2021, 22, 635.	2.8	20
353	Inferring Transcriptional Networks by Mining Omics Data. Current Bioinformatics, 2006, 1, 301-313.	1.5	19
354	Transcriptional Profiling of Plasmodium falciparum Parasites from Patients with Severe Malaria Identifies Distinct Low vs. High Parasitemic Clusters. PLoS ONE, 2012, 7, e40739.	2.5	19
355	Multi-faceted analysis provides little evidence for recurrent whole-genome duplications during hexapod evolution. BMC Biology, 2020, 18, 57.	3.8	19
356	Complete mitochondrial genome of the Verticillium-wilt causing plant pathogen Verticillium nonalfalfae. PLoS ONE, 2016, 11, e0148525.	2.5	19
357	Nearby transposable elements impact plant stress gene regulatory networks: a meta-analysis in A. thaliana and S. lycopersicum. BMC Genomics, 2022, 23, 18.	2.8	19
358	The genome of <i>Corydalis</i> reveals the evolution of benzylisoquinoline alkaloid biosynthesis in Ranunculales. Plant Journal, 2022, 111, 217-230.	5.7	19
359	Modelling the ancestral sequence distribution and model frequencies in context-dependent models for primate non-coding sequences. BMC Evolutionary Biology, 2010, 10, 244.	3.2	18
360	The Ectocarpus Genome and Brown Algal Genomics. Advances in Botanical Research, 2012, 64, 141-184.	1.1	18

#	Article	IF	CITATIONS
361	Genomes shed light on the evolution of <i>Begonia</i> , a megaâ€diverse genus. New Phytologist, 2022, 234, 295-310.	7.3	18
362	Genomic and Metabolomic Analyses of the Marine Fungus Emericellopsis cladophorae: Insights into Saltwater Adaptability Mechanisms and Its Biosynthetic Potential. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /	Over tos k 10	Tf £ 80 697 Td
363	Large-Scale Gene and Ancient Genome Duplications. , 2005, , 329-368.		17
364	Applications of Next-Generation Sequencing Technologies and Computational Tools in Molecular Evolution and Aquatic Animals Conservation Studies: A Short Review. Evolutionary Bioinformatics, 2019, 15, 117693431989228.	1.2	17
365	Phages Actively Challenge Niche Communities in Antarctic Soils. MSystems, 2020, 5, .	3.8	17
366	The <i>Larix kaempferi</i> genome reveals new insights into wood properties. Journal of Integrative Plant Biology, 2022, 64, 1364-1373.	8.5	17
367	Multiple Independent Recruitment of Sodefrin Precursor-Like Factors in Anuran Sexually Dimorphic Glands. Molecular Biology and Evolution, 2019, 36, 1921-1930.	8.9	16
368	Mitochondrial genes from 18 angiosperms fill sampling gaps for phylogenomic inferences of the early diversification of flowering plants. Journal of Systematics and Evolution, 2022, 60, 773-788.	3.1	16
369	Phylogenetic analysis of the env gene of HIV-1 isolates taking into account individual nucleotide substitution rates. Aids, 1996, 10, 1485-1494.	2.2	15
370	Together We Stand: Genes Cluster to Coordinate Regulation. Developmental Cell, 2008, 14, 640-642.	7.0	15
371	Phylogenetic inference based on distance methods. , 2009, , 142-180.		15
372	Enrichment and aggregation of topological motifs are independent organizational principles of integrated interaction networks. Molecular BioSystems, 2011, 7, 2769.	2.9	15
373	The heterothallic sugarbeet pathogen Cercospora beticola contains exon fragments of both MAT genes that are homogenized by concerted evolution. Fungal Genetics and Biology, 2014, 62, 43-54.	2.1	15
374	Draft Genome Assembly of the Sheep Scab Mite, Psoroptes ovis. Genome Announcements, 2018, 6, .	0.8	15
375	Insights Into the Mechanisms Implicated in Pinus pinaster Resistance to Pinewood Nematode. Frontiers in Plant Science, 2021, 12, 690857.	3.6	15
376	Taxus yunnanensis genome offers insights into gymnosperm phylogeny and taxol production. Communications Biology, 2021, 4, 1203.	4.4	15
377	Using Non-Reversible Context-Dependent Evolutionary Models to Study Substitution Patterns in Primate Non-Coding Sequences. Journal of Molecular Evolution, 2010, 71, 34-50.	1.8	14
378	OMSim: a simulator for optical map data. Bioinformatics, 2017, 33, 2740-2742.	4.1	14

#	Article	IF	CITATIONS
379	A genomic analysis and transcriptomic atlas of gene expression in Psoroptes ovis reveals feeding- and stage-specific patterns of allergen expression. BMC Genomics, 2019, 20, 756.	2.8	14
380	Multi-proxy analyses of a mid-15th century Middle Iron Age Bantu-speaker palaeo-faecal specimen elucidates the configuration of the $\hat{a}\in \hat{a}$ ancestral $\hat{a}\in \hat{a}$ sub-Saharan African intestinal microbiome. Microbiome, 2020, 8, 62.	11.1	14
381	Molecular phylogeny of the stress-70 protein family with reference to algal relationships. European Journal of Phycology, 1997, 32, 279-285.	2.0	13
382	The taxonomic position of Chlamydomyxa labyrinthuloides. European Journal of Phycology, 1999, 34, 97-108.	2.0	13
383	CyClus3D: a Cytoscape plugin for clustering network motifs in integrated networks. Bioinformatics, 2011, 27, 1587-1588.	4.1	13
384	ASP-G: an ASP-based method for finding attractors in genetic regulatory networks. Bioinformatics, 2014, 30, 3086-3092.	4.1	13
385	Transcriptomic responses of a simplified soil microcosm to a plant pathogen and its biocontrol agent reveal a complex reaction to harsh habitat. BMC Genomics, 2016, 17, 838.	2.8	13
386	Current status of the multinational Arabidopsis community. Plant Direct, 2020, 4, e00248.	1.9	13
387	A novel approach to identifying regulatory motifs in distantly related genomes. Genome Biology, 2005, 6, R113.	9.6	12
388	Helicoidal transfer matrix model for inhomogeneous DNA melting. Physical Review E, 2006, 73, 011908.	2.1	12
389	Agulhas Current properties shape microbial community diversity and potential functionality. Scientific Reports, 2018, 8, 10542.	3.3	12
390	Application of second-generation sequencing (SGS) and third generation sequencing (TGS) in aquaculture breeding program. Aquaculture, 2022, 548, 737633.	3.5	12
391	The genome of <i>Hibiscus hamabo</i> reveals its adaptation to saline and waterlogged habitat. Horticulture Research, 2022, 9, uhac067.	6.3	12
392	Cultivated hawthorn (<i>Crataegus pinnatifida</i> var. major) genome sheds light on the evolution of Maleae (apple tribe). Journal of Integrative Plant Biology, 2022, 64, 1487-1501.	8.5	12
393	Phylogenetic analysis of a fish tapeworm, Proteocephalus exiguus, based on the small subunit rRNA gene1Note: Nucleotide sequence data reported in this paper will appear in the EMBL, GenBankâ,,¢ and DDBJ Nucleotide Sequence Databases under the accession number X99976.1. Molecular and Biochemical Parasitology, 1997, 84, 263-266.	1.1	11
394	'Natural selection merely modified while redundancy created'-Susumu Ohno's idea of the evolutionary importance of gene and genome duplications. Journal of Structural and Functional Genomics, 2003, 3, 7-9.	1.2	11
395	Digging into Acceptor Splice Site Prediction: An Iterative Feature Selection Approach. Lecture Notes in Computer Science, 2004, , 386-397.	1.3	11
396	Semantically linking molecular entities in literature through entity relationships. BMC Bioinformatics, 2012, 13, S6.	2.6	11

#	Article	IF	CITATIONS
397	Genomic Resources to Guide Improvement of the Shea Tree. Frontiers in Plant Science, 2021, 12, 720670.	3.6	11
398	Evolution of NLR Resistance Genes in Magnoliids: Dramatic Expansions of CNLs and Multiple Losses of TNLs. Frontiers in Plant Science, 2021, 12, 777157.	3.6	11
399	Open-ended on-board Evolutionary Robotics for robot swarms. , 2009, , .		10
400	Unravelling cis-Regulatory Elements in the Genome of the Smallest Photosynthetic Eukaryote: Phylogenetic Footprinting in Ostreococcus. Journal of Molecular Evolution, 2009, 69, 249-259.	1.8	10
401	Characterizing regulatory path motifs in integrated networks using perturbational data. Genome Biology, 2010, 11, R32.	9.6	10
402	U-Compare bio-event meta-service: compatible BioNLP event extraction services. BMC Bioinformatics, 2011, 12, 481.	2.6	10
403	Germline copy number variation associated with Mendelian inheritance of CLL in two families. Leukemia, 2012, 26, 1710-1713.	7.2	10
404	ORCAE-AOCC: A Centralized Portal for the Annotation of African Orphan Crop Genomes. Genes, 2019, 10, 950.	2.4	10
405	Predicting Human Immunodeficiency Virus (HIV) Drug Resistance Using Recurrent Neural Networks. Lecture Notes in Computer Science, 2007, , 234-243.	1.3	10
406	Improving the Adaptability of Simulated Evolutionary Swarm Robots in Dynamically Changing Environments. PLoS ONE, 2014, 9, e90695.	2.5	9
407	Model-Based Detection of Whole-Genome Duplications in a Phylogeny. Molecular Biology and Evolution, 2020, 37, 2734-2746.	8.9	9
408	De novo Assembly of Transcriptomes From a B73 Maize Line Introgressed With a QTL for Resistance to Gray Leaf Spot Disease Reveals a Candidate Allele of a Lectin Receptor-Like Kinase. Frontiers in Plant Science, 2020, 11, 191.	3.6	9
409	Transcriptomic analysis of the poultry red mite, Dermanyssus gallinae, across all stages of the lifecycle. BMC Genomics, 2021, 22, 248.	2.8	9
410	Divergence of a genomic island leads to the evolution of melanization in a halophyte root fungus. ISME Journal, 2021, 15, 3468-3479.	9.8	9
411	Analyzing text in search of bio-molecular events. , 2009, , .		9
412	Genome and Metabolome MS-Based Mining of a Marine Strain of Aspergillus affinis. Journal of Fungi (Basel, Switzerland), 2021, 7, 1091.	3.5	9
413	Secundary structure of the large ribosomal subunit RNA of the moss Funaria hygrometrica. Journal of Plant Physiology, 1997, 151, 239-241.	3.5	8
414	On Adaptive Self-Organization in Artificial Robot Organisms. , 2009, , .		8

#	Article	IF	CITATIONS
415	Efficient context-dependent model building based on clustering posterior distributions for non-coding sequences. BMC Evolutionary Biology, 2009, 9, 87.	3.2	8
416	First draft genome assembly of the Argane treeÂ(Argania spinosa). F1000Research, 2018, 7, 1310.	1.6	8
417	Application of the EVEX resource to event extraction and network construction: Shared Task entry and result analysis. BMC Bioinformatics, 2015, 16, S3.	2.6	7
418	The KnownLeaf literature curation system captures knowledge about Arabidopsis leaf growth and development and facilitates integrated data mining. Current Plant Biology, 2015, 2, 1-11.	4.7	7
419	MorphDB: Prioritizing Genes for Specialized Metabolism Pathways and Gene Ontology Categories in Plants. Frontiers in Plant Science, 2018, 9, 352.	3.6	7
420	First draft genome assembly of the Argane treeÂ(Argania spinosa). F1000Research, 2018, 7, 1310.	1.6	7
421	MicroRNA-mediated post-transcriptional regulation of Pinus pinaster response and resistance to pinewood nematode. Scientific Reports, 2022, 12, 5160.	3.3	7
422	A functionally conserved STORR gene fusion in Papaver species that diverged 16.8 million years ago. Nature Communications, 2022, 13, .	12.8	7
423	Compilation of Pseudomonad Sequences Present in a Database on the Structure of Ribosomal RNA. Systematic and Applied Microbiology, 1996, 19, 493-500.	2.8	6
424	HIGH-PRECISION BIO-MOLECULAR EVENT EXTRACTION FROM TEXT USING PARALLEL BINARY CLASSIFIERS. Computational Intelligence, 2011, 27, 645-664.	3.2	6
425	Draft Genome Assembly of the False Spider Mite Brevipalpus yothersi. Microbiology Resource Announcements, 2019, 8, .	0.6	6
426	The <i>Euscaphis japonica</i> genome and the evolution of malvids. Plant Journal, 2021, 108, 1382-1399.	5.7	6
427	Evolutionary genetics: When duplicated genes don't stick to the rules. Heredity, 2006, 96, 204-205.	2.6	5
428	Reverseâ€Engineering Transcriptional Modules from Gene Expression Data. Annals of the New York Academy of Sciences, 2009, 1158, 36-43.	3.8	5
429	Mining the Enriched Subgraphs for Specific Vertices in a Biological Graph. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 1496-1507.	3.0	5
430	The Potential for pathogenicity was present in the ancestor of the Ascomycete subphylum Pezizomycotina. BMC Evolutionary Biology, 2010, 10, 318.	3.2	4
431	Context-dependent codon partition models provide significant increases in model fit in atpB and rbcL protein-coding genes. BMC Evolutionary Biology, 2011, 11, 145.	3.2	4
432	Size does matter. Nature Plants, 2018, 4, 859-860.	9.3	4

#	Article	IF	Citations
433	Optimising orbit counting of arbitrary order by equation selection. BMC Bioinformatics, 2019, 20, 27.	2.6	4
434	"Winter Is Coming― How did Polyploid Plants Survive?. Molecular Plant, 2020, 13, 4-5.	8.3	4
435	Emergent adaptive behaviour of GRN-controlled simulated robots in a changing environment. PeerJ, 2016, 4, e2812.	2.0	4
436	The 18S rRNA from Odontophrynus americanus 2n and 4n (Amphibia, Anura) reveals unusual extra sequences in the variable region V2. Genome, 2004, 47, 421-428.	2.0	3
437	Highlights of the BioTM 2010 workshop on advances in bio text mining. BMC Bioinformatics, 2010, 11, .	2.6	3
438	Comparative in silico analysis of SSRs in coding regions of high confidence predicted genes in Norway spruce (Picea abies) and Loblolly pine (Pinus taeda). BMC Genetics, 2015, 16, 149.	2.7	3
439	The Challenges of Interpreting Phosphoproteomics Data: A Critical View Through the Bioinformatics Lens. Lecture Notes in Computer Science, 2016, , 196-204.	1.3	3
440	Nymphaea colorata (Blue-Petal Water Lily). Trends in Genetics, 2020, 36, 718-719.	6.7	3
441	A non-duplicated magnoliid genome. Nature Plants, 2021, 7, 1162-1163.	9.3	3
442	Adaptive Self-Organizing Organisms Using A Bio-Inspired Gene Regulatory Network Controller. Advances in Computational Intelligence and Robotics Book Series, 0, , 68-82.	0.4	3
443	Feature Extraction Using Clustering of Protein. Lecture Notes in Computer Science, 2006, , 614-623.	1.3	3
444	Divergence of active site motifs among different classes of <i>Populus</i> glutaredoxins results in substrate switches. Plant Journal, 2022, 110, 129-146.	5.7	3
445	From DNA- to NA-centrism and the conditions for gene-centrism revisited. Biology and Philosophy, 2014, 29, 55-69.	1.4	2
446	The sociobiology of genes: the gene's eye view as a unifying behavioural-ecological framework for biological evolution. History and Philosophy of the Life Sciences, 2018, 40, 6.	1.1	2
447	Feature Ranking Using an EDA-based Wrapper Approach. Studies in Fuzziness and Soft Computing, 2006, , 243-257.	0.8	2
448	Are all fishes ancient polyploids?., 2003,, 65-73.		2
449	Getting up to speed. Current Opinion in Plant Biology, 2012, 15, 111-114.	7.1	1
450	Editorial overview: Genome studies and molecular genetics: Of plant genes, genomes, and genomics. Current Opinion in Plant Biology, 2016, 30, iv-vi.	7.1	1

#	Article	IF	CITATIONS
451	Draft Genome Sequences of Two Unclassified Bacteria, Sphingomonas sp. Strains IBVSS1 and IBVSS2, Isolated from Environmental Samples. Genome Announcements, 2017, 5, .	0.8	1
452	Draft Genome Sequences of Two Unclassified Chitinophagaceae Bacteria, IBVUCB1 and IBVUCB2, Isolated from Environmental Samples. Genome Announcements, 2017, 5, .	0.8	1
453	Simulating Biological Complexity through Artificial Evolution. , 2017, , .		1
454	Investigation of fungal phylogeny on the basis of small ribosomal subunit RNA sequences. , 1995 , , $297\text{-}308$.		1
455	FunSiP: a modular and extensible classifier for the prediction of functional sites in DNA. Bioinformatics, 2008, 24, 1532-1533.	4.1	0
456	Genomes: the truth is in there. EMBO Reports, 2011, 12, 93-93.	4.5	0
457	Genomic resources and databases for plant research community. Current Plant Biology, 2016, 7-8, 1.	4.7	0
458	Draft Genome Sequences of Two Unclassified Bacteria, Hydrogenophaga sp. Strains IBVHS1 and IBVHS2, Isolated from Environmental Samples. Genome Announcements, 2017, 5, .	0.8	0
459	Editorial overview: Genome studies and molecular genetics: Treasure troves of evolution. Current Opinion in Plant Biology, 2018, 42, iii-v.	7.1	0
460	Enhancing Coding Potential Prediction for Short Sequences Using Complementary Sequence Features and Feature Selection. Lecture Notes in Computer Science, 2007, , 107-118.	1.3	0
461	Gene Duplicates in Vibrio Genomes. , 0, , 76-83.		0
462	Feature Ranking Using an EDA-based Wrapper Approach. , 2006, , 243-257.		0
463	SNP Detection in Pinus pinaster Transcriptome and Association with Resistance to Pinewood Nematode. Forests, 2022, 13, 946.	2.1	O