
Gilda Aiello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9253262/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of the intestinal trans-epithelial transport and antioxidant activity of two hempseed peptides WVSPLAGRT (H2) and IGFLIIWV (H3). Food Research International, 2022, 152, 110720.	2.9	23
2	Oxidative Stress Modulation by Carnosine in Scaffold Free Human Dermis Spheroids Model: A Proteomic Study. International Journal of Molecular Sciences, 2022, 23, 1468.	1.8	8
3	Assessment of the Physicochemical and Conformational Changes of Ultrasound-Driven Proteins Extracted from Soybean Okara Byproduct. Foods, 2021, 10, 562.	1.9	20
4	Trans-Epithelial Transport, Metabolism, and Biological Activity Assessment of the Multi-Target Lupin Peptide LILPKHSDAD (P5) and Its Metabolite LPKHSDAD (P5-Met). Nutrients, 2021, 13, 863.	1.7	17
5	Investigation of Chlorella pyrenoidosa Protein as a Source of Novel Angiotensin I-Converting Enzyme (ACE) and Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Peptides. Nutrients, 2021, 13, 1624.	1.7	17
6	Functionalization of soya press cake (okara) by ultrasonication for enhancement of submerged fermentation with Lactobacillus paracasei LUHS244 for wheat bread production. LWT - Food Science and Technology, 2021, 152, 112337.	2.5	11
7	Application in nutrition: cholesterol-lowering activity. , 2021, , 551-568.		1
8	Composition of the Protein Ingredients from Insoluble Oat Byproducts Treated with Food-Grade Enzymes, Such as Amylase, Cellulose/Xylanase, and Protease. Foods, 2021, 10, 2695.	1.9	3
9	Analysis of Narrow-Leaf Lupin Proteins in Lupin-Enriched Pasta by Untargeted and Targeted Mass Spectrometry. Foods, 2020, 9, 1083.	1.9	6
10	Phycobiliproteins from Arthrospira Platensis (Spirulina): A New Source of Peptides with Dipeptidyl Peptidase-IV Inhibitory Activity. Nutrients, 2020, 12, 794.	1.7	43
11	Assessment of the Multifunctional Behavior of Lupin Peptide P7 and Its Metabolite Using an Integrated Strategy. Journal of Agricultural and Food Chemistry, 2020, 68, 13179-13188.	2.4	24
12	Recent Advances in Microalgae Peptides: Cardiovascular Health Benefits and Analysis. Journal of Agricultural and Food Chemistry, 2019, 67, 11825-11838.	2.4	33
13	Chemical and biological characterization of spirulina protein hydrolysates: Focus on ACE and DPP-IV activities modulation. Journal of Functional Foods, 2019, 63, 103592.	1.6	32
14	Soybean Peptides Exert Multifunctional Bioactivity Modulating 3-Hydroxy-3-Methylglutaryl-CoA Reductase and Dipeptidyl Peptidase-IV Targets in Vitro. Journal of Agricultural and Food Chemistry, 2019, 67, 4824-4830.	2.4	24
15	Multifunctional peptides for the prevention of cardiovascular disease: A new concept in the area of bioactive food-derived peptides. Journal of Functional Foods, 2019, 55, 135-145.	1.6	110
16	Cholesterol-Reducing Foods: Proteins and Peptides. , 2019, , 323-329.		3
17	YDFYPSSTKDQQS (P3), a peptide from lupin protein, absorbed by Caco-2 cells, modulates cholesterol metabolism in HepG2 cells via SREBP-1 activation. Journal of Food Biochemistry, 2018, 42, e12524.	1.2	13
18	Effect of soy on metabolic syndrome and cardiovascular risk factors: a randomized controlled trial. European Journal of Nutrition, 2018, 57, 499-511.	1.8	49

Gilda Aiello

#	Article	IF	CITATIONS
19	Proteomic analysis of sweet algerian apricot kernels (Prunus armeniaca L.) by combinatorial peptide ligand libraries and LC–MS/MS. Food Chemistry, 2018, 239, 935-945.	4.2	15
20	Behavior of three hypocholesterolemic peptides from soy protein in an intestinal model based on differentiated Caco-2 cell. Journal of Functional Foods, 2018, 45, 363-370.	1.6	44
21	Investigations on the hypocholesterolaemic activity of LILPKHSDAD and LTFPGSAED, two peptides from lupin β-conglutin: Focus on LDLR and PCSK9 pathways. Journal of Functional Foods, 2017, 32, 1-8.	1.6	49
22	Hempseed Peptides Exert Hypocholesterolemic Effects with a Statin-Like Mechanism. Journal of Agricultural and Food Chemistry, 2017, 65, 8829-8838.	2.4	57
23	Exploration of Potentially Bioactive Peptides Generated from the Enzymatic Hydrolysis of Hempseed Proteins. Journal of Agricultural and Food Chemistry, 2017, 65, 10174-10184.	2.4	70
24	A multidisciplinary investigation on the bioavailability and activity of peptides from lupin protein. Journal of Functional Foods, 2016, 24, 297-306.	1.6	66
25	Lupin Peptides Modulate the Protein-Protein Interaction of PCSK9 with the Low Density Lipoprotein Receptor in HepC2 Cells. Scientific Reports, 2016, 6, 29931.	1.6	69
26	Proteomic characterization of hempseed (Cannabis sativa L.). Journal of Proteomics, 2016, 147, 187-196.	1.2	64
27	Mass Spectrometry-Based Proteomic Approach in <i>Oenococcus oeni</i> Enological Starter. Journal of Proteome Research, 2014, 13, 2856-2866.	1.8	48