
Indrajit M Patil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9253232/publications.pdf Version: 2024-02-01

ΙνοραιιτÂΜ Ρατιι

#	Article	IF	CITATIONS
1	Reduced graphene oxide-wrapped α-Mn2O3/α-MnO2 nanowires for electrocatalytic oxygen reduction in alkaline medium. Journal of Materials Science: Materials in Electronics, 2022, 33, 8644-8654.	2.2	8
2	Ru decorated Pt2CoNi/C nanoparticles as a proficient electrocatalyst for oxygen reduction reaction. Journal of Alloys and Compounds, 2022, 918, 165520.	5.5	4
3	An adept approach to convert titanium carbide to titanium nitride and it's composite with N-doped carbon nanotubes for efficient oxygen electroreduction kinetics. Catalysis Today, 2021, 370, 46-54.	4.4	8
4	<scp>Microwaveâ€assisted</scp> synthesis of <scp>cobaltâ€polyoxometalate</scp> @carbon black nanocomposites and their electrocatalytic ability toward oxygen reduction reaction. International Journal of Energy Research, 2021, 45, 7366-7379.	4.5	12
5	TiO ₂ -Decorated Titanium Carbide MXene co-Doped with Nitrogen and Sulfur for Oxygen Electroreduction. ACS Applied Nano Materials, 2021, 4, 1094-1103.	5.0	26
6	Sulfur and nitrogen co-doped rGO sheets as efficient electrocatalyst for oxygen reduction reaction in alkaline medium. Diamond and Related Materials, 2021, 114, 108338.	3.9	15
7	Cobalt Nanoparticles Encapsulated in N-Doped Carbon on the Surface of MXene (Ti ₃ C ₂) Play a Key Role for Electroreduction of Oxygen. Energy & Fuels, 2021, 35, 17909-17918.	5.1	17
8	Molten-Salt Synthesis of Pt ₃ Co Binary Alloy Nanoplates as Excellent and Durable Electrocatalysts toward Oxygen Electroreduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 986-993.	6.7	20
9	2D/3D heterostructure of h-BN/reduced graphite oxide as a remarkable electrode Material for supercapacitor. Journal of Power Sources, 2020, 479, 229092.	7.8	34
10	Boosting oxygen evolution reaction performance by nickel substituted cobalt-iron oxide nanoparticles embedded over reduced graphene oxide. Materials Chemistry and Physics, 2020, 252, 123238.	4.0	10
11	Enhanced Oxygen Reduction Reaction by Pdâ€Pt Alloy Catalyst with Stabilized Platinum Skin. ChemistrySelect, 2020, 5, 3486-3493.	1.5	12
12	Efficient oxygen electroreduction kinetics by titanium carbide@nitrogen doped carbon nanocomposite. International Journal of Hydrogen Energy, 2019, 44, 23649-23657.	7.1	12
13	Polyoxomolybdate anchored graphite oxide: Noble metal-free electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2019, 44, 24922-24933.	7.1	15
14	Cobalt-Doped Ba ₂ In ₂ O ₅ Brownmillerites: An Efficient Electrocatalyst for Oxygen Reduction in Alkaline Medium. ACS Omega, 2018, 3, 1710-1717.	3.5	22
15	Nitrogen and sulphur co-doped multiwalled carbon nanotubes as an efficient electrocatalyst for improved oxygen electroreduction. Applied Surface Science, 2018, 449, 697-704.	6.1	29
16	Low Density Three-Dimensional Metal Foams as Significant Electrocatalysts toward Methanol Oxidation Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 2062-2068.	6.7	19
17	Mechanical activation in reduced graphite oxide/boron nitride nanocomposite electrocatalysts for significant improvement in dioxygen reduction. Sustainable Energy and Fuels, 2018, 2, 252-261.	4.9	16
18	Designing of stable and highly efficient ordered Pt2CoNi ternary alloy electrocatalyst: The origin of dioxygen reduction activity. Nano Energy, 2018, 43, 219-227.	16.0	49

IndrajitÂM Patil

#	Article	IF	CITATIONS
19	Hexagonal Boron Nitride-Supported Crystalline Manganese Oxide Nanorods/Carbon: A Tunable Nanocomposite Catalyst for Dioxygen Electroreduction. ACS Sustainable Chemistry and Engineering, 2018, 6, 16886-16895.	6.7	20
20	Mixed phase titanium carbide (Ti-C-Tx): A strategy to design a significant electrocatalyst for oxygen electroreduction and storage application. Applied Surface Science, 2018, 458, 819-826.	6.1	16
21	Nanorice-like Structure of Carbon-Doped Hexagonal Boron Nitride as an Efficient Metal-Free Catalyst for Oxygen Electroreduction. ACS Sustainable Chemistry and Engineering, 2018, 6, 11115-11122.	6.7	52
22	B,N,S tri-doped reduced graphite oxide–cobalt oxide composite: a bifunctional electrocatalyst for enhanced oxygen reduction and oxygen evolution reactions. New Journal of Chemistry, 2018, 42, 12908-12917.	2.8	25
23	Unusual enhancement in the electroreduction of oxygen by NiCoPt by surface tunability through potential cycling. RSC Advances, 2017, 7, 11777-11785.	3.6	8
24	Carbon Nanotube/Boron Nitride Nanocomposite as a Significant Bifunctional Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions. Chemistry - A European Journal, 2017, 23, 676-683.	3.3	61
25	Synergistically Enhanced Electrocatalytic Performance of an N-Doped Graphene Quantum Dot-Decorated 3D MoS ₂ –Graphene Nanohybrid for Oxygen Reduction Reaction. ACS Omega, 2016, 1, 971-980.	3.5	96
26	Three dimensional nanocomposite of reduced graphene oxide and hexagonal boron nitride as an efficient metal-free catalyst for oxygen electroreduction. Journal of Materials Chemistry A, 2016, 4, 4506-4515.	10.3	56
27	Enhanced methanol electrooxidation at Pt skin@PdPt nanocrystals. Journal of Materials Chemistry A, 2015, 3, 17771-17779.	10.3	25