
Hua Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9253119/publications.pdf Version: 2024-02-01

ΗΠΑ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	In Inland China, Rice, Rather than Fish, Is the Major Pathway for Methylmercury Exposure. Environmental Health Perspectives, 2010, 118, 1183-1188.	6.0	412
2	Bioaccumulation of Methylmercury versus Inorganic Mercury in Rice (<i>Oryza sativa</i> L.) Grain. Environmental Science & Technology, 2010, 44, 4499-4504.	10.0	260
3	Can a Paper-Based Device Trace COVID-19 Sources with Wastewater-Based Epidemiology?. Environmental Science & Technology, 2020, 54, 3733-3735.	10.0	160
4	The potential of wastewater-based epidemiology as surveillance and early warning of infectious disease outbreaks. Current Opinion in Environmental Science and Health, 2020, 17, 1-7.	4.1	147
5	Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries. Journal of Hazardous Materials, 2020, 397, 122720.	12.4	127
6	Selenium in Soil Inhibits Mercury Uptake and Translocation in Rice (<i>Oryza sativa</i> L.). Environmental Science & Technology, 2012, 46, 10040-10046.	10.0	126
7	Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signatures. Scientific Reports, 2013, 3, 3322.	3.3	126
8	Health risks of heavy metal exposure through vegetable consumption near a large-scale Pb/Zn smelter in central China. Ecotoxicology and Environmental Safety, 2018, 161, 99-110.	6.0	114
9	A comprehensive review on current status, mechanism, and possible sources of arsenic contamination in groundwater: a global perspective with prominence of Pakistan scenario. Environmental Geochemistry and Health, 2019, 41, 737-760.	3.4	108
10	Nanomaterial-based aptamer sensors for arsenic detection. Biosensors and Bioelectronics, 2020, 148, 111785.	10.1	100
11	Arsenic biogeochemical cycling in paddy soil-rice system: Interaction with various factors, amendments and mineral nutrients. Science of the Total Environment, 2021, 773, 145040.	8.0	100
12	Efficient removal of Cd(II) from aqueous solution by pinecone biochar: Sorption performance and governing mechanisms. Environmental Pollution, 2020, 265, 115001.	7.5	83
13	Recent progress in Fenton/Fenton-like reactions for the removal of antibiotics in aqueous environments. Ecotoxicology and Environmental Safety, 2022, 236, 113464.	6.0	74
14	Mitigation of mercury accumulation in rice using rice hull-derived biochar as soil amendment: A field investigation. Journal of Hazardous Materials, 2020, 388, 121747.	12.4	64
15	Heavy Metal Bioaccumulation in Rice from a High Geological Background Area in Guizhou Province, China. International Journal of Environmental Research and Public Health, 2018, 15, 2281.	2.6	62
16	Selenium translocation in the soil-rice system in the Enshi seleniferous area, Central China. Science of the Total Environment, 2019, 669, 83-90.	8.0	62
17	Describing the toxicity and sources and the remediation technologies for mercury-contaminated soil. RSC Advances, 2020, 10, 23221-23232.	3.6	56
18	Paper-based microfluidics for rapid diagnostics and drug delivery. Journal of Controlled Release, 2020, 322, 187-199.	9.9	53

Hua Zhang

#	Article	IF	CITATIONS
19	Understanding the paradox of selenium contamination in mercury mining areas: High soil content and low accumulation in rice. Environmental Pollution, 2014, 188, 27-36.	7.5	52
20	Potentially toxic elements in soil ofÂthe Khyber Pakhtunkhwa province and Tribal areas, Pakistan: evaluation for human and ecological risk assessment. Environmental Geochemistry and Health, 2018, 40, 2177-2190.	3.4	52
21	Efficient performance of magnesium oxide loaded biochar for the significant removal of Pb2+ and Cd2+ from aqueous solution. Ecotoxicology and Environmental Safety, 2021, 221, 112426.	6.0	51
22	Photochemical synthesis of ZnO@Au nanorods as an advanced reusable SERS substrate for ultrasensitive detection of light-resistant organic pollutant in wastewater. Talanta, 2019, 194, 680-688.	5.5	47
23	Vertical mixing with return irrigation water the cause of arsenic enrichment in groundwater of district Larkana Sindh, Pakistan. Environmental Pollution, 2019, 245, 77-88.	7.5	47
24	An integrated biosensor system with mobile health and wastewater-based epidemiology (iBMW) for COVID-19 pandemic. Biosensors and Bioelectronics, 2020, 169, 112617.	10.1	47
25	Hydrogeochemical and health risk evaluation of arsenic in shallow and deep aquifers along the different floodplains of Punjab, Pakistan. Journal of Hazardous Materials, 2021, 402, 124074.	12.4	46
26	Biosensors for wastewater-based epidemiology for monitoring public health. Water Research, 2021, 191, 116787.	11.3	45
27	Occurrence of various viruses and recent evidence of SARS-CoV-2 in wastewater systems. Journal of Hazardous Materials, 2021, 414, 125439.	12.4	44
28	Methanogenesis Is an Important Process in Controlling MeHg Concentration in Rice Paddy Soils Affected by Mining Activities. Environmental Science & Technology, 2020, 54, 13517-13526.	10.0	43
29	Insights into the mechanisms of arsenic-selenium interactions and the associated toxicity in plants, animals, and humans: A critical review. Critical Reviews in Environmental Science and Technology, 2021, 51, 704-750.	12.8	43
30	Bioaccumulation and Health Risk Assessment of Heavy Metals in the Soil–Rice System in a Typical Seleniferous Area in Central China. Environmental Toxicology and Chemistry, 2019, 38, 1577-1584.	4.3	41
31	Unraveling prevalence and public health risks of arsenic, uranium and co-occurring trace metals in groundwater along riverine ecosystem in Sindh and Punjab, Pakistan. Environmental Geochemistry and Health, 2019, 41, 2223-2238.	3.4	36
32	Elucidating various geochemical mechanisms drive fluoride contamination in unconfined aquifers along the major rivers in Sindh and Punjab, Pakistan. Environmental Pollution, 2019, 249, 535-549.	7.5	34
33	Exogenous selenium (cadmium) inhibits the absorption and transportation of cadmium (selenium) in rice. Environmental Pollution, 2021, 268, 115829.	7.5	34
34	Paper-based nanosensors to evaluate community-wide illicit drug use for wastewater-based epidemiology. Water Research, 2021, 189, 116559.	11.3	33
35	Bioaccumulation of Hg in Rice Leaf Facilitates Selenium Bioaccumulation in Rice (<i>Oryza sativa) Tj ETQq1 1</i>	0.784314 rg 10.0	BT /Overlock
36	Nanomaterial-based aptamer sensors for analysis of illicit drugs and evaluation of drugs consumption for wastewater-based epidemiology. TrAC - Trends in Analytical Chemistry, 2020, 130, 115975.	11.4	30

Hua Zhang

#	Article	IF	CITATIONS
37	Corn (Zea mays L.): A low methylmercury staple cereal source and an important biospheric sink of atmospheric mercury, and health risk assessment. Environment International, 2019, 131, 104971.	10.0	22
38	Contaminations, Sources, and Health Risks of Trace Metal(loid)s in Street Dust of a Small City Impacted by Artisanal Zn Smelting Activities. International Journal of Environmental Research and Public Health, 2017, 14, 961.	2.6	21
39	Mercury pollution in China: implications on the implementation of the Minamata Convention. Environmental Sciences: Processes and Impacts, 2022, 24, 634-648.	3.5	21
40	Chromium contamination in paddy soil-rice systems and associated human health risks in Pakistan. Science of the Total Environment, 2022, 826, 153910.	8.0	20
41	Effect of Atmospheric Mercury Deposition on Selenium Accumulation in Rice (<i>Oryza sativa</i> L.) at a Mercury Mining Region in Southwestern China. Environmental Science & Technology, 2015, 49, 3540-3547.	10.0	17
42	Rolling Circle Amplification as an Efficient Analytical Tool for Rapid Detection of Contaminants in Aqueous Environments. Biosensors, 2021, 11, 352.	4.7	17
43	Understanding the translocation and bioaccumulation of cadmium in the Enshi seleniferous area, China: Possible impact by the interaction of Se and Cd. Environmental Pollution, 2022, 300, 118927.	7.5	16
44	Spectral insight into thiosulfate-induced mercury speciation transformation in a historically polluted soil. Science of the Total Environment, 2019, 657, 938-944.	8.0	14
45	Minamata Convention on Mercury: Chinese progress and perspectives. National Science Review, 2017, 4, 677-679.	9.5	13
46	A Review on the Status of Mercury Pollution in Pakistan: Sources and Impacts. Archives of Environmental Contamination and Toxicology, 2019, 76, 519-527.	4.1	11
47	Efficient removal of Cd(II) from aqueous environment by potassium permanganate-modified eucalyptus biochar. Biomass Conversion and Biorefinery, 2024, 14, 77-89.	4.6	7
48	Assessing Air–Surface Exchange and Fate of Mercury in a Subtropical Forest Using a Novel Passive Exchange-Meter Device. Environmental Science & Technology, 2019, 53, 4869-4879.	10.0	6
49	Understanding the Bioaccumulation of Mercury in Rice Plants at the Wanshan Mercury Mine, China: Using Stable Mercury Isotopes. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006103.	3.0	2
50	A new method of predicting the contribution of TGM to Hg in white rice: Using leaf THg and implications for Hg risk control in Wanshan Hg mine area. Environmental Pollution, 2021, 288, 117727.	7.5	2
51	Impacts of Selenium on the Biogeochemical Cycles of Mercury in Terrestrial Ecosystems in Mercury Mining Areas. Springer Theses, 2014, , .	0.1	2
52	A Hydroponic Study on Effect of Zinc Against Mercury Uptake by Triticale: Kinetic Process and Accumulation. Bulletin of Environmental Contamination and Toxicology, 2021, , 1.	2.7	1