
Debabrata Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9253079/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabrication and Characterization of High-Quality Epitaxial Nanocolumnar Niobium Films with Abrupt Interfaces on YSZ(001). Journal of Physical Chemistry C, 2022, 126, 2098-2107.	3.1	6
2	Excitation dependent and time resolved photoluminescence of β-Ga2O3, β-(Ga0.955Al0.045)2O3 and β-(Ga0.91In0.09)2O3 epitaxial layers grown by pulsed laser deposition. Journal of Luminescence, 2022, 248, 118960.	3.1	8
3	Controlled Phase Stabilization Enabled Tunable Optical Properties of Nanocrystalline GeO ₂ Films. ACS Applied Electronic Materials, 2022, 4, 3115-3124.	4.3	9
4	Microstructure, chemical inhomogeneity, and electronic properties of tin-incorporated Ga2O3 compounds. Journal of Materials Science, 2022, 57, 11170-11188.	3.7	5
5	InGaN/GaN Quantum Dot Light-Emitting Diodes on Silicon with Coalesced GaN Nanowire Buffer Layer. ACS Applied Nano Materials, 2021, 4, 1825-1830.	5.0	9
6	Size- and Phase-Controlled Nanometer-Thick β-Ga ₂ O ₃ Films with Green Photoluminescence for Optoelectronic Applications. ACS Applied Nano Materials, 2021, 4, 3331-3338.	5.0	20
7	Realization of high-quality RF sputtered ZnMgO (x=15%) thin films by post-growth annealing treatment. Superlattices and Microstructures, 2021, 156, 106977.	3.1	5
8	Interfacial Phase Modulation-Induced Structural Distortion, Band Gap Reduction, and Nonlinear Optical Activity in Tin-Incorporated Ga ₂ O ₃ . Journal of Physical Chemistry C, 2021, 125, 20468-20481.	3.1	18
9	InGaN/GaN Quantum Dots on Silicon With Coalesced Nanowire Buffer Layers: A Potential Technology for Visible Silicon Photonics. IEEE Nanotechnology Magazine, 2020, 19, 571-574.	2.0	8
10	Room-temperature ultraviolet-ozone annealing of ZnO and ZnMgO nanorods to attain enhanced optical properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 18777-18790.	2.2	4
11	Improving optical properties and controlling defect-bound states in ZnMgO thin films through ultraviolet–ozone annealing. Thin Solid Films, 2020, 708, 138112.	1.8	7
12	Investigations on heterogeneously coupled Submonolayer (SML) on Stranski-Krastanov (SK) quantum dot heterostructures with higher (0.1ML/sec) and lower (0.05ML/sec) growth rates. , 2020, , .		0
13	Ultrasensitive zinc magnesium oxide nanorods based micro-sensor platform for UV detection and light trapping. Sensors and Actuators A: Physical, 2018, 278, 127-139.	4.1	13
14	Enhancement in optical characteristics of c-axis-oriented radio frequency–sputtered ZnO thin films through growth ambient and annealing temperature optimization. Materials Science in Semiconductor Processing, 2017, 66, 1-8.	4.0	33