Nandini Vasudevan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9252926/publications.pdf

Version: 2024-02-01

32 1,691 21 30 g-index

32 32 32 32 1751

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Immunoblot Detection of the of the Estrogen Receptor \hat{l}_{\pm} as an Outcome of GPR30/GPER1 Activation. Methods in Molecular Biology, 2022, 2418, 25-39.	0.4	2
2	Delayed Mechanical Response to Chemical Kinetics in Self-Oscillating Hydrogels Driven by the Belousov–Zhabotinsky Reaction. Macromolecules, 2021, 54, 6430-6439.	2.2	16
3	Estrogenic regulation of social behavior and sexually dimorphic brain formation. Neuroscience and Biobehavioral Reviews, 2020, 110, 46-59.	2.9	32
4	Does GPER1 Play a Role in Sexual Dimorphism?. Frontiers in Endocrinology, 2020, 11, 595895.	1.5	13
5	GPER1/GPR30 in the brain: Crosstalk with classical estrogen receptors and implications for behavior. Journal of Steroid Biochemistry and Molecular Biology, 2018, 176, 57-64.	1.2	85
6	Is the membrane estrogen receptor, GPER1, a promiscuous receptor that modulates nuclear estrogen receptor-mediated functions in the brain?. Hormones and Behavior, 2018, 104, 165-172.	1.0	23
7	Detection of the Phosphorylation of the Estrogen Receptor \hat{l}_{\pm} as an Outcome of GPR30 Activation. Methods in Molecular Biology, 2016, 1366, 457-470.	0.4	3
8	Cognition and State Anxiety are Regulated by Thyroid Hormone Signaling. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2015, 15, 60-70.	0.5	0
9	Membrane-Initiated Non-Genomic Signaling by Estrogens in the Hypothalamus: Cross-Talk with Glucocorticoids with Implications for Behavior. Frontiers in Endocrinology, 2015, 6, 18.	1.5	23
10	Activation of the GPR30 Receptor Promotes Lordosis in Female Mice. Neuroendocrinology, 2014, 100, 71-80.	1.2	30
11	GPR30 activation decreases anxiety in the open field test but not in the elevated plus maze test in female mice. Brain and Behavior, 2014, 4, 51-59.	1.0	74
12	Activation of G-protein-coupled receptor 30 is sufficient to enhance spatial recognition memory in ovariectomized rats. Behavioural Brain Research, 2014, 262, 68-73.	1.2	57
13	Activation of the G-protein coupled receptor 30 (GPR30) has different effects on anxiety in male and female mice. Steroids, 2014, 81, 49-56.	0.8	42
14	Estrogen receptor-mediated transcription involves the activation of multiple kinase pathways in neuroblastoma cells. Journal of Steroid Biochemistry and Molecular Biology, 2014, 139, 45-53.	1.2	34
15	Thyroid hormones regulate anxiety in the male mouse. Hormones and Behavior, 2014, 65, 88-96.	1.0	39
16	Distinct behavioral phenotypes in male mice lacking the thyroid hormone receptor $\hat{l}\pm 1$ or \hat{l}^2 isoforms. Hormones and Behavior, 2013, 63, 742-751.	1.0	16
17	Non-genomic actions of estrogens and their interaction with genomic actions in the brain. Frontiers in Neuroendocrinology, 2008, 29, 238-257.	2.5	303
18	Membrane-Initiated Actions of Estrogens in Neuroendocrinology: Emerging Principles. Endocrine Reviews, 2007, 28, 1-19.	8.9	214

#	Article	IF	CITATIONS
19	Molecular mechanisms of crosstalk between thyroid hormones and estrogens. Current Opinion in Endocrinology, Diabetes and Obesity, 2005, 12, 381-388.	0.6	13
20	Calcium Flux in Neuroblastoma Cells Is a Coupling Mechanism between Non-Genomic and Genomic Modes of Estrogens. Neuroendocrinology, 2005, 81, 174-182.	1.2	21
21	Thyroid hormone can increase estrogen-mediated transcription from a consensus estrogen response element in neuroblastoma cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4890-4895.	3.3	33
22	Estrogen regulation of chicken riboflavin carrier protein gene is mediated by ERE half sites without direct binding of estrogen receptor. Molecular and Cellular Endocrinology, 2005, 231, 1-11.	1.6	9
23	Integration of steroid hormone initiated membrane action to genomic function in the brain. Steroids, 2005, 70, 388-396.	0.8	95
24	Estrogen and Thyroid Hormone Receptor Interactions: Physiological Flexibility by Molecular Specificity. Physiological Reviews, 2002, 82, 923-944.	13.1	103
25	Genetic Mechanisms in Neural and Hormonal Controls over Female Reproductive Behaviors. , 2002, , 441-XXII.		8
26	Isoform Specificity for Oestrogen Receptor and Thyroid Hormone Receptor Genes and Their Interactions on the NR2D Gene Promoter. Journal of Neuroendocrinology, 2002, 14, 836-842.	1.2	19
27	Differential Interaction of Estrogen Receptor and Thyroid Hormone Receptor Isoforms on the Rat Oxytocin Receptor Promoter Leads to Differences in Transcriptional Regulation. Neuroendocrinology, 2001, 74, 309-324.	1.2	63
28	Differential crosstalk between estrogen receptor (ER) \hat{l}_{\pm} and ER \hat{l}_{\pm} and the thyroid hormone receptor isoforms results in flexible regulation of the consensus ERE. Molecular Brain Research, 2001, 95, 9-17.	2.5	58
29	Characterization of chicken riboflavin carrier protein gene structure and promoter regulation by estrogen. Journal of Biosciences, 2001, 26, 39-46.	0.5	5
30	Crosstalk Between Oestrogen Receptors and Thyroid Hormone Receptor Isoforms Results in Differential Regulation of the Preproenkephalin Gene. Journal of Neuroendocrinology, 2001, 13, 779-790.	1.2	43
31	Early membrane estrogenic effects required for full expression of slower genomic actions in a nerve cell line. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12267-12271.	3.3	151
32	Estrogens, brain and behavior: studies in fundamental neurobiology and observations related to women's health. Journal of Steroid Biochemistry and Molecular Biology, 2000, 74, 365-373.	1.2	64