Ana P C Ribeiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9251540/publications.pdf Version: 2024-02-01

ANA D C RIBEIDO

#	Article	IF	CITATIONS
1	Commercial Gold Complexes Supported on Functionalised Carbon Materials as Efficient Catalysts for the Direct Oxidation of Ethane to Acetic Acid. Catalysts, 2022, 12, 165.	1.6	0
2	The Impact of Alumina Nanofluids on Pool Boiling Performance on Biphilic Surfaces for Cooling Applications. Energies, 2022, 15, 372.	1.6	6
3	Unprecedented Mechanochemical Synthesis and Heterogenization of a C-Scorpionate Au(III) Catalyst for Microwave-Assisted Biomass Valorization. Nanomaterials, 2022, 12, 362.	1.9	0
4	Tailored 3D Foams Decorated with Nanostructured Manganese Oxide for Asymmetric Electrochemical Capacitors. Journal of the Electrochemical Society, 2022, 169, 020511.	1.3	2
5	C-Heterogenized Re Nanoparticles as Effective Catalysts for the Reduction of 4-Nitrophenol and Oxidation of 1-Phenylethanol. Catalysts, 2022, 12, 285.	1.6	2
6	Effect of Graphene vs. Reduced Graphene Oxide in Gold Nanoparticles for Optical Biosensors—A Comparative Study. Biosensors, 2022, 12, 163.	2.3	10
7	Thermofluid characterization of nanofluids in spray cooling. Applied Thermal Engineering, 2022, 210, 118411.	3.0	8
8	Effect of alumina nanofluids on bubble dynamics and heat transfer under quiescent conditions. International Journal of Thermofluids, 2022, 15, 100168.	4.0	4
9	Heat Transfer and Fluid Dynamics of Nanofluid Droplets Impacting on a Smooth Heated Surface: Detailing Temporal Scale Effects by Using Time-Resolved Thermography. Heat Transfer Engineering, 2021, 42, 1720-1731.	1.2	4
10	Immobilization of His-tagged proteins on NiO foams for recyclable enzymatic reactors. Applied Surface Science, 2021, 537, 147848.	3.1	5
11	Glycerol: The liquid support for nanocatalysts. , 2021, , 585-612.		0
12	Pool Boiling of Nanofluids on Biphilic Surfaces: An Experimental and Numerical Study. Nanomaterials, 2021, 11, 125.	1.9	23
13	The importance of green chemistry metrics. , 2021, , 37-62.		2
14	Efficient and Reusable Iron Catalyst to Convert CO2 into Valuable Cyclic Carbonates. Molecules, 2021, 26, 1089.	1.7	3
15	Thermophysical Properties of 1-Butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, [C ₄ mim][(C ₂ F ₅) ₃ PF ₃], and of Its loNanofluid with Multi-Walled Carbon Nanotubes. Journal of Chemical & Engineering Data, 2021, 66–1717-1729	1.0	14
16	Nanofluids Characterization for Spray Cooling Applications. Symmetry, 2021, 13, 788.	1,1	15
17	Unprecedented Use of NHC Gold (I) Complexes as Catalysts for the Selective Oxidation of Ethane to Acetic Acid. Materials, 2021, 14, 4294.	1.3	5
18	Heat transfer in nanofluid spray cooling of a solid heated surface for cooling systems in civil and		2

military applications. , 2021, 1, .

2

#	Article	IF	CITATIONS
19	Novel Correlations between Spectroscopic and Morphological Properties of Activated Carbons from Waste Coffee Grounds. Processes, 2021, 9, 1637.	1.3	7
20	Application of molybdenum complexes for the oxidation of cyclohexane in acetonitrile, ionic liquid and supercritical CO2 media, a comparative study. Molecular Catalysis, 2020, 482, 100356.	1.0	15
21	Solvent-free oxidation of 1-phenylethanol catalysed by gold nanoparticles supported on carbon powder materials. Catalysis Today, 2020, 357, 22-31.	2.2	7
22	Commercial gold(III) complex supported on functionalized carbon materials as catalyst for cyclohexane hydrocarboxylation. Catalysis Today, 2020, 357, 39-45.	2.2	5
23	Spin state, electronic structure and bonding on C-scorpionate [Fe(II)Cl2(tpm)] catalyst: An experimental and computational study. Catalysis Today, 2020, 358, 403-411.	2.2	6
24	Characterization of AuNPs+rGO as a functionalized layer for LSPR sensors. Materials Letters: X, 2020, 5, 100032.	0.3	0
25	Thermofluid Characterization of Nanofluid Spray Cooling Combining Phase Doppler Interferometry with High-Speed Visualization and Time-Resolved IR Thermography. Energies, 2020, 13, 5864.	1.6	12
26	Mechanochemical Preparation of Pd(II) and Pt(II) Composites with Carbonaceous Materials and Their Application in the Suzuki-Miyaura Reaction at Several Energy Inputs. Molecules, 2020, 25, 2951.	1.7	5
27	Adipic Acid Route: Oxidation of Cyclohexene vs. Cyclohexane. Catalysts, 2020, 10, 1443.	1.6	11
28	Application of Ionic Liquids in Electrochemistry—Recent Advances. Molecules, 2020, 25, 5812.	1.7	83
29	Glycerol Role in Nano Oxides Synthesis and Catalysis. Catalysts, 2020, 10, 1406.	1.6	9
30	Selective Oxidation of Ethane to Acetic Acid Catalyzed by a C-Scorpionate Iron(II) Complex: A Homogeneous vs. Heterogeneous Comparison. Molecules, 2020, 25, 5642.	1.7	5
31	Catalytic Performance of a Magnetic Core-Shell Iron(II) C-Scorpionate under Unconventional Oxidation Conditions. Nanomaterials, 2020, 10, 2111.	1.9	7
32	Green synthesis of zinc oxide particles with apple-derived compounds and their application as catalysts in the transesterification of methyl benzoates. Dalton Transactions, 2020, 49, 6488-6494.	1.6	7
33	New Trends in the Conversion of CO2 to Cyclic Carbonates. Catalysts, 2020, 10, 479.	1.6	71
34	Ultrasound and Radiation-Induced Catalytic Oxidation of 1-Phenylethanol to Acetophenone with Iron-Containing Particulate Catalysts. Molecules, 2020, 25, 740.	1.7	5
35	Supported Gold Nanoparticles as Catalysts in Peroxidative and Aerobic Oxidation of 1-Phenylethanol under Mild Conditions. Nanomaterials, 2020, 10, 151.	1.9	7
36	Thermal Conductivity Enhancement Phenomena in Ionic Liquid-Based Nanofluids (Ionanofluids). Australian Journal of Chemistry, 2019, 72, 21.	0.5	23

#	Article	IF	CITATIONS
37	Effect of nanoparticles concentration on the characteristics of nanofluid sprays for cooling applications. Journal of Thermal Analysis and Calorimetry, 2019, 135, 3375-3386.	2.0	22
38	New C-scorpionate nickel(II) catalyst for Heck C–C coupling under unconventional conditions. Journal of Organometallic Chemistry, 2019, 896, 32-37.	0.8	6
39	Plasmonic properties of gold nanospheres coupled to reduced graphene oxide for biosensing applications *. , 2019, , .		3
40	Cyanosilylation of Aldehydes Catalyzed by Ag(I)- and Cu(II)-Arylhydrazone Coordination Polymers in Conventional and in Ionic Liquid Media. Catalysts, 2019, 9, 284.	1.6	12
41	Ionic liquid-based nanofluids (ionanofluids) for thermal applications: an experimental thermophysical characterization. Pure and Applied Chemistry, 2019, 91, 1309-1340.	0.9	29
42	C-scorpionate iron(II) complexes as highly selective catalysts for the hydrocarboxylation of cyclohexane. Inorganica Chimica Acta, 2019, 489, 269-274.	1.2	6
43	Synergistic catalytic action of vanadia–titania composites towards the microwave-assisted benzoin oxidation. Dalton Transactions, 2019, 48, 3198-3203.	1.6	7
44	Characterization of Plasmonic Effects in AuNP+rGO Composite as a Sensing Layer for a Low-cost Lab-on-chip Biosensor. , 2019, , .		1
45	Mechanochemical Activation and Catalysis. RSC Catalysis Series, 2019, , 548-563.	0.1	2
46	Evaluation of cell toxicity and DNA and protein binding of green synthesized silver nanoparticles. Biomedicine and Pharmacotherapy, 2018, 101, 137-144.	2.5	42
47	A new insight into pure and water-saturated quaternary phosphonium-based carboxylate ionic liquids: Density, heat capacity, ionic conductivity, thermogravimetric analysis, thermal conductivity and viscosity. Journal of Chemical Thermodynamics, 2018, 121, 97-111.	1.0	59
48	Heterogenized C‧corpionate Iron(II) Complex on Nanostructured Carbon Materials as Recyclable Catalysts for Microwaveâ€Assisted Oxidation Reactions. ChemCatChem, 2018, 10, 1821-1828.	1.8	35
49	Copper(II) complexes with an arylhydrazone of methyl 2-cyanoacetate as effective catalysts in the microwave-assisted oxidation of cyclohexane. Inorganica Chimica Acta, 2018, 471, 658-663.	1.2	15
50	Understanding the heat capacity enhancement in ionic liquid-based nanofluids (ionanofluids). Journal of Molecular Liquids, 2018, 253, 326-339.	2.3	51
51	Further development of the predictive models for physical properties of pure ionic liquids: Thermal conductivity and heat capacity. Journal of Chemical Thermodynamics, 2018, 118, 1-15.	1.0	45
52	Elementary and efficient catalyst process for the Knoevenagel condensation of araldehydes with arylmethylidene malononitrile. Inorganica Chimica Acta, 2018, 471, 76-81.	1.2	6
53	A Simulation Study of Surface Plasmons in Metallic Nanoparticles: Dependence on the Properties of an Embedding a‧i:H Matrix. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700487.	0.8	8
54	Gold Nanotriangles as Selective Catalysts for Cyclohexanol and Cyclohexanone Production. Applied Sciences (Switzerland), 2018, 8, 2655.	1.3	5

#	Article	IF	CITATIONS
55	Copper(II) Complexes of Arylhydrazone of 1H-Indene-1,3(2H)-dione as Catalysts for the Oxidation of Cyclohexane in Ionic Liquids. Catalysts, 2018, 8, 636.	1.6	3
56	Analysis of metallic nanoparticles embedded in thin film semiconductors for optoelectronic applications. Optical and Quantum Electronics, 2018, 50, 1.	1.5	7
57	Comparison of microwave and mechanochemical energy inputs in the catalytic oxidation of cyclohexane. Dalton Transactions, 2018, 47, 8193-8198.	1.6	9
58	Molybdenum(II) Complexes with α-Diimines: Catalytic Activity in Organic and Ionic Liquid Solvents. European Journal of Inorganic Chemistry, 2018, 2018, 3922-3932.	1.0	4
59	Effect of Phenolic Compounds on the Synthesis of Gold Nanoparticles and its Catalytic Activity in the Reduction of Nitro Compounds. Nanomaterials, 2018, 8, 320.	1.9	66
60	New Trendy Magnetic C-Scorpionate Iron Catalyst and Its Performance towards Cyclohexane Oxidation. Catalysts, 2018, 8, 69.	1.6	15
61	Optical properties of metal nanoparticles embedded in amorphous silicon analysed using discrete dipole approximation. , 2018, , .		1
62	Ball milling as an effective method to prepare magnetically recoverable heterometallic catalysts for alcohol oxidation. Inorganica Chimica Acta, 2017, 455, 653-658.	1.2	6
63	The influence of multiwalled carbon nanotubes and graphene oxide additives on the catalytic activity of 3d metal catalysts towards 1-phenylethanol oxidation. Journal of Molecular Catalysis A, 2017, 426, 557-563.	4.8	13
64	Copper(II) coordination polymers of arylhydrazone of 1H-indene-1,3(2H)-dione linked by 4,4′-bipyridineor hexamethylenetetramine: Evaluation of catalytic activity in Henry reaction. Polyhedron, 2017, 133, 33-39.	1.0	12
65	Supported C corpionate Vanadium(IV) Complexes as Reusable Catalysts for Xylene Oxidation. Chemistry - an Asian Journal, 2017, 12, 1915-1919.	1.7	23
66	Arylhydrazone Cd(II) and Cu(II) complexes as catalysts for secondary alcohol oxidation. Polyhedron, 2017, 129, 182-188.	1.0	17
67	Using chiral ionic liquid additives to enhance asymmetric induction in a Diels–Alder reaction. Dalton Transactions, 2017, 46, 1704-1713.	1.6	10
68	N ₂ O-Free single-pot conversion of cyclohexane to adipic acid catalysed by an iron(<scp>ii</scp>) scorpionate complex. Green Chemistry, 2017, 19, 1499-1501.	4.6	43
69	Gold nanoparticles deposited on surface modified carbon materials as reusable catalysts for hydrocarboxylation of cyclohexane. Applied Catalysis A: General, 2017, 547, 124-131.	2.2	25
70	Carbon dioxide-to-methanol single-pot conversion using a C-scorpionate iron(<scp>ii</scp>) catalyst. Green Chemistry, 2017, 19, 4811-4815.	4.6	94
71	Simple solvent-free preparation of dispersed composites and their application as catalysts in oxidation and hydrocarboxylation of cyclohexane. Materials Today Chemistry, 2017, 5, 52-62.	1.7	10
72	Liquid phase oxidation of xylenes catalyzed by the tripodal C-scorpionate iron(II) complex [FeCl2{κ3-HC(pz)3}]. Polyhedron, 2017, 125, 151-155.	1.0	14

#	Article	IF	CITATIONS
73	Tuning Cyclohexane Oxidation: Combination of Microwave Irradiation and Ionic Liquid with the C-Scorpionate [FeCl ₂ (Tpm)] Catalyst. Organometallics, 2017, 36, 192-198.	1.1	32
74	Gold Nanoparticles Deposited on Surface Modified Carbon Xerogels as Reusable Catalysts for Cyclohexane C-H Activation in the Presence of CO and Water. Molecules, 2017, 22, 603.	1.7	21
75	Catalytic Performance of Fe(II)-Scorpionate Complexes towards Cyclohexane Oxidation in Organic, Ionic Liquid and/or Supercritical CO2 Media: A Comparative Study. Catalysts, 2017, 7, 230.	1.6	18
76	Simulation of localized surface plasmon in metallic nanoparticles embedded in amorphous silicon. , 2017, , .		2
77	Highly Selective Cyclohexane Oxidation Catalyzed by Ferrocene in Ionic Liquid Medium. Letters in Organic Chemistry, 2017, 14, .	0.2	2
78	Highly efficient and reusable CNT supported iron(<scp>ii</scp>) catalyst for microwave assisted alcohol oxidation. Dalton Transactions, 2016, 45, 6816-6819.	1.6	46
79	Syntheses and crystal structures of benzene-sulfonate and -carboxylate copper polymers and their application in the oxidation of cyclohexane in ionic liquid under mild conditions. Dalton Transactions, 2016, 45, 13957-13968.	1.6	23
80	Mononuclear copper(ii) complexes of an arylhydrazone of 1H-indene-1,3(2H)-dione as catalysts for the oxidation of 1-phenylethanol in ionic liquid medium. RSC Advances, 2016, 6, 83412-83420.	1.7	6
81	Zn ^{II} and Cd ^{II} MOFs based on an amidoisophthalic acid ligand: synthesis, structure and catalytic application in transesterification. RSC Advances, 2016, 6, 89007-89018.	1.7	21
82	A Cu(<scp>ii</scp>) MOF with a flexible bifunctionalised terpyridine as an efficient catalyst for the single-pot hydrocarboxylation of cyclohexane to carboxylic acid in water/ionic liquid medium. Dalton Transactions, 2016, 45, 12779-12789.	1.6	28
83	Biomolecular interaction, catecholase like activity and alkane oxidation in ionic liquids of a phenylcarbohydrazone-based monocopper(II) complex. Inorganica Chimica Acta, 2016, 450, 426-436.	1.2	28
84	Nickel(<scp>ii</scp>)-2-amino-4-alkoxy-1,3,5-triazapentadienate complexes as catalysts for Heck and Henry reactions. RSC Advances, 2016, 6, 29159-29163.	1.7	18
85	Catalytic oxidation of cyclohexane with hydrogen peroxide and a tetracopper(II) complex in an ionic liquid. Comptes Rendus Chimie, 2015, 18, 758-765.	0.2	51
86	Reduced Graphene Oxide Composite with Oxidizable Manganese/Cobalt Mixed Oxide for <i>p</i> resol Oxidation by Using Molecular Oxygen. ChemPlusChem, 2015, 80, 1164-1169.	1.3	5
87	Catalytic Oxidation of Alcohols. Advances in Organometallic Chemistry, 2015, , 91-174.	0.5	142
88	An efficient Cu(<scp>ii</scp>)-bis(oxazoline)-based polymer immobilised ionic liquid phase catalyst for asymmetric carbon–carbon bond formation. Green Chemistry, 2014, 16, 1470-1479.	4.6	35
89	Polynuclear Copper(II) Complexes as Catalysts for the Peroxidative Oxidation of Cyclohexane in a Roomâ€Temperature Ionic Liquid. European Journal of Inorganic Chemistry, 2014, 2014, 4541-4550.	1.0	43
90	Thermophysical and magnetic studies of two paramagnetic liquid salts: [C4mim][FeCl4] and [P66614][FeCl4]. Fluid Phase Equilibria, 2013, 350, 43-50.	1.4	41

#	Article	IF	CITATIONS
91	Thermal Conductivity of [C <l>_n</l> mim][(CF ₃ SO ₂)& and [C ₄ mim][BF ₄] IoNanofluids with Carbon Nanotubesâ€"Measurement, Theory and Structural Characterization. Journal of Nanofluids, 2013, 2,	lt;SUB&g 1.4	t;243
92	Thermal Conductivity of Humid Air. International Journal of Thermophysics, 2012, 33, 1686-1703.	1.0	23
93	Asymmetric Carbonâ€Carbon Bond Forming Reactions Catalysed by Metal(II) Bis(oxazoline) Complexes Immobilized using Supported Ionic Liquids. Advanced Synthesis and Catalysis, 2011, 353, 995-1004.	2.1	24
94	Dielectric properties of liquid refrigerants: Facts and trends. International Journal of Refrigeration, 2011, 34, 393-401.	1.8	10
95	Electrical Conductivity and Viscosity of 1-Hexyl-3-methylimidazolium Bis(trifluorosulfonyl)imide, [C6mim] [(CF3SO2)2N] (CAS-RN# 382150-50-7). International Journal of Thermophysics, 2010, 31, 1869-1879.	1.0	23
96	Thermal Properties of Ionic Liquids and IoNanofluids of Imidazolium and Pyrrolidinium Liquids. Journal of Chemical & Engineering Data, 2010, 55, 653-661.	1.0	217
97	Dielectric properties of 1,1,1-trifluoroethane (HFC-143a) in the liquid phase. Fluid Phase Equilibria, 2009, 275, 152-158.	1.4	7
98	Relative Permittivity and Dipole Moments of Replacement Refrigerant Mixtures (R408A and R409A) in the Liquid State. Journal of Chemical & Engineering Data, 2008, 53, 378-387.	1.0	5
99	Relative Permittivities of 1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea), 1,1,1,2,3,3-Hexafluoropropane (HFC-236ea), and 1,1,1,3,3-Pentafluorobutane (HFC-365mfc) in the Liquid Phase. Journal of Chemical & Engineering Data, 2007, 52, 2041-2049.	1.0	17
100	Thermal Properties of Ionic Liquids and Ionanofluids. , 0, , .		14
101	Synthesis, Properties and Physical Applications of IoNanofluids. , 0, , .		7