Shimon Bershtein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9250909/publications.pdf

Version: 2024-02-01

686830 1,767 22 13 citations h-index papers

g-index 28 28 28 1896 docs citations times ranked citing authors all docs

713013

21

#	Article	IF	CITATIONS
1	Evolution of homoâ \in oligomerization of methionine Sâ \in adenosyltransferases is replete with structureâ \in "function constrains. Protein Science, 2022, 31, .	3.1	2
2	A Highâ€Throughput Continuous Spectroscopic Assay to Measure the Activity of Natural Product Methyltransferases. ChemBioChem, 2022, 23, .	1.3	10
3	Metabolic response to point mutations reveals principles of modulation of <i>in vivo</i> enzyme activity and phenotype. Molecular Systems Biology, 2021, 17, e10200.	3.2	10
4	Predicting 3D protein structures in light of evolution. Nature Ecology and Evolution, 2021, 5, 1195-1198.	3.4	7
5	SAMase of Bacteriophage T3 Inactivates Escherichia coli's Methionine <i>S</i> -Adenosyltransferase by Forming Heteropolymers. MBio, 2021, 12, e0124221.	1.8	5
6	Chromosomal barcoding of E. coli populations reveals lineage diversity dynamics at high resolution. Nature Ecology and Evolution, 2020, 4, 437-452.	3.4	44
7	Pan-Cancer Analysis of Mitochondria Chaperone-Client Co-Expression Reveals Chaperone Functional Partitioning. Cancers, 2020, 12, 825.	1.7	9
8	The interdimeric interface controls function and stability of Ureaplasma urealiticum methionine S-adenosyltransferase. Journal of Molecular Biology, 2019, 431, 4796-4816.	2.0	12
9	Bridging the physical scales in evolutionary biology: from protein sequence space to fitness of organisms and populations. Current Opinion in Structural Biology, 2017, 42, 31-40.	2.6	63
10	Gene Dosage Experiments in Enterobacteriaceae Using Arabinose-regulated Promoters. Bio-protocol, 2017, 7, .	0.2	4
11	Biophysical principles predict fitness landscapes of drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1470-8.	3.3	132
12	Transient protein-protein interactions perturb E. coli metabolome and cause gene dosage toxicity. ELife, 2016, 5, .	2.8	58
13	Delayed commitment to evolutionary fate in antibiotic resistance fitness landscapes. Nature Communications, 2015, 6, 7385.	5.8	138
14	Systems-Level Response to Point Mutations in a Core Metabolic Enzyme Modulates Genotype-Phenotype Relationship. Cell Reports, 2015, 11, 645-656.	2.9	38
15	Protein Homeostasis Imposes a Barrier on Functional Integration of Horizontally Transferred Genes in Bacteria. PLoS Genetics, 2015, 11, e1005612.	1.5	79
16	Protein Quality Control Acts on Folding Intermediates to Shape the Effects of Mutations on Organismal Fitness. Molecular Cell, 2013, 49, 133-144.	4.5	145
17	Soluble oligomerization provides a beneficial fitness effect on destabilizing mutations. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4857-4862.	3.3	107
18	Soluble oligomerization provides a beneficial fitness effect on destabilizing mutations Nature Precedings, $2011, \ldots$	0.1	0

#	Article	IF	CITATIONS
19	Advances in laboratory evolution of enzymes. Current Opinion in Chemical Biology, 2008, 12, 151-158.	2.8	214
20	Intense Neutral Drifts Yield Robust and Evolvable Consensus Proteins. Journal of Molecular Biology, 2008, 379, 1029-1044.	2.0	232
21	Ohno's Model Revisited: Measuring the Frequency of Potentially Adaptive Mutations under Various Mutational Drifts. Molecular Biology and Evolution, 2008, 25, 2311-2318.	3.5	66
22	Robustness–epistasis link shapes the fitness landscape of a randomly drifting protein. Nature, 2006, 444, 929-932.	13.7	387