
Xu Xiao-Bin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9250819/publications.pdf Version: 2024-02-01

XII XIAO-RIN

#	Article	IF	CITATIONS
1	Severe Surface Ozone Pollution in China: A Global Perspective. Environmental Science and Technology Letters, 2018, 5, 487-494.	3.9	570
2	Amplified ozone pollution in cities during the COVID-19 lockdown. Science of the Total Environment, 2020, 735, 139542.	3.9	516
3	Significant increase of surface ozone at a rural site, north of eastern China. Atmospheric Chemistry and Physics, 2016, 16, 3969-3977.	1.9	259
4	Long-term trend of surface ozone at a regional background station in eastern China 1991–2006: enhanced variability. Atmospheric Chemistry and Physics, 2008, 8, 2595-2607.	1.9	224
5	Characteristics of pollutants and their correlation to meteorological conditions at a suburban site in the North China Plain. Atmospheric Chemistry and Physics, 2011, 11, 4353-4369.	1.9	219
6	Tropospheric Ozone Assessment Report: Present-day tropospheric ozone distribution and trends relevant to vegetation. Elementa, 2018, 6, .	1.1	212
7	Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research. Elementa, 2018, 6, 1.	1.1	196
8	Unravelling the composition of very complex samples by comprehensive gas chromatography coupled to time-of-flight mass spectrometry. Journal of Chromatography A, 2002, 974, 169-184.	1.8	193
9	Contributions of pollutants from North China Plain to surface ozone at the Shangdianzi GAW Station. Atmospheric Chemistry and Physics, 2008, 8, 5889-5898.	1.9	179
10	Tropospheric Ozone Assessment Report: Database and metrics data of global surface ozone observations. Elementa, 2017, 5, .	1.1	172
11	Tropospheric Ozone Assessment Report: Present-day ozone distribution and trends relevant to human health. Elementa, 2018, 6, .	1.1	167
12	Global and regional trends of atmospheric sulfur. Scientific Reports, 2019, 9, 953.	1.6	166
13	A review of atmospheric chemistry research in China: Photochemical smog, haze pollution, and gas-aerosol interactions. Advances in Atmospheric Sciences, 2012, 29, 1006-1026.	1.9	144
14	Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: A case study. Science of the Total Environment, 2014, 499, 228-237.	3.9	136
15	Measurements of organic species in air and seawater from the tropical Atlantic. Geophysical Research Letters, 2004, 31, .	1.5	126
16	Measurements of ozone and its precursors in Beijing during summertime: impact of urban plumes on ozone pollution in downwind rural areas. Atmospheric Chemistry and Physics, 2011, 11, 12241-12252.	1.9	120
17	Gaseous pollutants in Beijing urban area during the heating period 2007–2008: variability, sources, meteorological, and chemical impacts. Atmospheric Chemistry and Physics, 2011, 11, 8157-8170.	1.9	117
18	VOC reactivity and its effect on ozone production during the HaChi summer campaign. Atmospheric Chemistry and Physics, 2011, 11, 4657-4667.	1.9	111

#	Article	IF	CITATIONS
19	Comprehensive two-dimensional gas chromatography (GC × GC) measurements of volatile organic compounds in the atmosphere. Atmospheric Chemistry and Physics, 2003, 3, 665-682.	1.9	106
20	Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China – Part 1: Overall trends and characteristics. Atmospheric Chemistry and Physics, 2016, 16, 6191-6205.	1.9	104
21	Role of ambient ammonia in particulate ammonium formation at a rural site in the North China Plain. Atmospheric Chemistry and Physics, 2018, 18, 167-184.	1.9	99
22	Possible heterogeneous chemistry of hydroxymethanesulfonate (HMS) in northern China winter haze. Atmospheric Chemistry and Physics, 2019, 19, 1357-1371.	1.9	97
23	Ambient sulfur dioxide, nitrogen dioxide, and ammonia at ten background and rural sites in China during 2007–2008. Atmospheric Environment, 2010, 44, 2625-2631.	1.9	92
24	Characteristics of trace gaseous pollutants at a regional background station in Northern China. Atmospheric Chemistry and Physics, 2009, 9, 927-936.	1.9	83
25	Responses of human health and vegetation exposure metrics to changes in ozone concentration distributions in the European Union, United States, and China. Atmospheric Environment, 2017, 152, 123-145.	1.9	82
26	Darkening of the mid-Himalaya glaciers since 2000 and the potential causes. Environmental Research Letters, 2012, 7, 014021.	2.2	81
27	Vertical distributions of SO2 and NO2 in the lower atmosphere in Beijing urban areas, China. Science of the Total Environment, 2008, 390, 456-465.	3.9	80
28	Trends of the precipitation acidity over China during 1992–2006. Science Bulletin, 2010, 55, 1800-1807.	1.7	77
29	Carbonyl sulfide (COS) as a tracer for canopy photosynthesis, transpiration and stomatal conductance: potential and limitationsâ€. Plant, Cell and Environment, 2012, 35, 657-667.	2.8	74
30	Vertical profiles of black carbon measured by a micro-aethalometer in summer in the North China Plain. Atmospheric Chemistry and Physics, 2016, 16, 10441-10454.	1.9	72
31	Characteristics and recent trends of sulfur dioxide at urban, rural, and background sites in North China: Effectiveness of control measures. Journal of Environmental Sciences, 2012, 24, 34-49.	3.2	65
32	Characteristics of gaseous pollutants at Gucheng, a rural site southwest of Beijing. Journal of Geophysical Research, 2009, 114, .	3.3	61
33	Ozone production in summer in the megacities of Tianjin and Shanghai, China: a comparative study. Atmospheric Chemistry and Physics, 2012, 12, 7531-7542.	1.9	58
34	Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China – Part 2: The roles of anthropogenic emissions and climate variability. Atmospheric Chemistry and Physics, 2018, 18, 773-798.	1.9	56
35	Multi-decadal surface ozone trends at globally distributed remote locations. Elementa, 2020, 8, .	1.1	54
36	Widespread Albedo Decreasing and Induced Melting of Himalayan Snow and Ice in the Early 21st Century. PLoS ONE, 2015, 10, e0126235.	1.1	53

#	Article	IF	CITATIONS
37	Surface gas pollutants in Lhasa, a highland city of Tibet – current levels and pollution implications. Atmospheric Chemistry and Physics, 2014, 14, 10721-10730.	1.9	52
38	Air pollution over the North China Plain and its implication of regional transport: A new sight from the observed evidences. Environmental Pollution, 2018, 234, 29-38.	3.7	49
39	Long-term changes of regional ozone in China: implications for human health and ecosystem impacts. Elementa, 2020, 8, .	1.1	48
40	Role of Ammonia on the Feedback Between AWC and Inorganic Aerosol Formation During Heavy Pollution in theÂNorthÂChinaÂPlain. Earth and Space Science, 2019, 6, 1675-1693.	1.1	44
41	Influence of air mass downward transport on the variability of surface ozone at Xianggelila Regional Atmosphere Background Station, southwest China. Atmospheric Chemistry and Physics, 2014, 14, 5311-5325.	1.9	42
42	SO ₂ noontime-peak phenomenon in the North China Plain. Atmospheric Chemistry and Physics, 2014, 14, 7757-7768.	1.9	41
43	Spatio-temporal variations in SO2 and NO2 emissions caused by heating over the Beijing-Tianjin-Hebei Region constrained by an adaptive nudging method with OMI data. Science of the Total Environment, 2018, 642, 543-552.	3.9	41
44	Seasonal variation in surface ozone and its regional characteristics at global atmosphere watch stations in China. Journal of Environmental Sciences, 2019, 77, 291-302.	3.2	41
45	GC×GC measurements of C ₇ -C ₁₁ aromatic and n-alkane hydrocarbons on Crete, in air from Eastern Europe during the MINOS campaign. Atmospheric Chemistry and Physics. 2003. 3. 1461-1475.	1.9	40
46	Contribution of hydroxymethanesulfonate (HMS) to severe winter haze in the North China Plain. Atmospheric Chemistry and Physics, 2020, 20, 5887-5897.	1.9	40
47	NH ₃ -promoted hydrolysis of NO ₂ induces explosive growth in HONO. Atmospheric Chemistry and Physics, 2019, 19, 10557-10570.	1.9	38
48	Dust-Dominated Coarse Particles as a Medium for Rapid Secondary Organic and Inorganic Aerosol Formation in Highly Polluted Air. Environmental Science & Technology, 2020, 54, 15710-15721.	4.6	37
49	Lower tropospheric distributions of O ₃ and aerosol over Raoyang, a rural site in the North China Plain. Atmospheric Chemistry and Physics, 2017, 17, 3891-3903.	1.9	35
50	Two-year measurements of surface ozone at Dangxiong, a remote highland site in the Tibetan Plateau. Journal of Environmental Sciences, 2015, 31, 133-145.	3.2	33
51	First simultaneous measurements of peroxyacetyl nitrate (PAN) and ozone at Nam Co in the central Tibetan Plateau: impacts from the PBL evolution and transport processes. Atmospheric Chemistry and Physics, 2018, 18, 5199-5217.	1.9	32
52	Wintertime peroxyacetyl nitrate (PAN) in the megacity Beijing: Role of photochemical and meteorological processes. Journal of Environmental Sciences, 2014, 26, 83-96.	3.2	31
53	Explosive morning growth phenomena of NH3 on the North China Plain: Causes and potential impacts on aerosol formation. Environmental Pollution, 2020, 257, 113621.	3.7	27
54	Zonal Similarity of Longâ€Term Changes and Seasonal Cycles of Baseline Ozone at Northern Midlatitudes. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031908.	1.2	27

#	Article	IF	CITATIONS
55	A study of the atmospheric VOCs of Mount Tai in June 2006. Atmospheric Environment, 2009, 43, 2503-2508.	1.9	25
56	Significant downward trend of SO2 observed from 2005 to 2010 at a background station in the Yangtze Delta region, China. Science China Chemistry, 2012, 55, 1451-1458.	4.2	24
57	Marine carbonyl sulfide (OCS) and carbon disulfide (CS ₂): a compilation of measurements in seawater and the marine boundary layer. Earth System Science Data, 2020, 12, 591-609.	3.7	24
58	Lower tropospheric ozone over the North China Plain: variability and trends revealed by IASI satellite observations for 2008–2016. Atmospheric Chemistry and Physics, 2018, 18, 16439-16459.	1.9	23
59	Trends of Tropospheric Ozone over China Based on Satellite Data (1979–2005). Advances in Climate Change Research, 2011, 2, 43-48.	2.1	22
60	10Be/7Be implies the contribution of stratosphere-troposphere transport to the winter-spring surface O3 variation observed on the Tibetan Plateau. Science Bulletin, 2011, 56, 84-88.	1.7	22
61	Recent advances in studies of ozone pollution and impacts in China: A short review. Current Opinion in Environmental Science and Health, 2021, 19, 100225.	2.1	21
62	Aerosol Promotes Peroxyacetyl Nitrate Formation During Winter in the North China Plain. Environmental Science & Technology, 2021, 55, 3568-3581.	4.6	20
63	Impact of the East Asian summer monsoon on long-term variations in the acidity of summer precipitation in Central China. Atmospheric Chemistry and Physics, 2011, 11, 1671-1684.	1.9	17
64	Wet deposition of sulfur and nitrogen at Mt. Emei in the West China Rain Zone, southwestern China: Status, inter-annual changes, and sources. Science of the Total Environment, 2020, 713, 136676.	3.9	17
65	Impact of volatile organic compounds and photochemical activities on particulate matters during a high ozone episode at urban, suburb and regional background stations in Beijing. Atmospheric Environment, 2020, 236, 117629.	1.9	16
66	Coupling of comprehensive two-dimensional gas chromatography with quadrupole mass spectrometry: Application to the identification of atmospheric volatile organic compounds. Journal of Chromatography A, 2014, 1361, 229-239.	1.8	15
67	Background concentrations of reactive gases and the impacts of long-range transport at the Jinsha regional atmospheric background station. Science China Earth Sciences, 2011, 54, 1604-1613.	2.3	14
68	Characteristics of precipitation chemistry at Lushan Mountain, East China: 1992–2009. Environmental Science and Pollution Research, 2012, 19, 2329-2343.	2.7	13
69	Observations of high level of ozone at Qinghai Lake basin in the northeastern Qinghai-Tibetan Plateau, western China. Journal of Atmospheric Chemistry, 2015, 72, 19-26.	1.4	12
70	Observed levels and trends of gaseous SO2 and HNO3 at Mt. Waliguan, China: Results from 1997 to 2009. Journal of Environmental Sciences, 2013, 25, 726-734.	3.2	11
71	Assessing the effect of a Saharan dust storm on oxygenated organic compounds at Izaña, Tenerife (July–August 2002). Journal of Geophysical Research, 2006, 111, .	3.3	9
72	Measurement report: Long-term variations in carbon monoxide at a background station in China's Yangtze River Delta region. Atmospheric Chemistry and Physics, 2020, 20, 15969-15982.	1.9	9

#	Article	IF	CITATIONS
73	Understanding the formation of high-ozone episodes at Raoyang, a rural site in the north China plain. Atmospheric Environment, 2020, 240, 117797.	1.9	7
74	Measurement report: Long-term variations in surface NO _{<i>x</i>} and SO ₂ mixing ratios from 2006 to 2016 at a background site in the Yangtze River Delta region, China. Atmospheric Chemistry and Physics, 2022, 22, 1015-1033.	1.9	6
75	Mode Calculation and Testing of a Car Body in White. Shock and Vibration, 2011, 18, 289-298.	0.3	4
76	Pollution plumes observed by aircraft over North China during the IPAC-NC field campaign. Science Bulletin, 2013, 58, 4329-4336.	1.7	4
77	Characteristics of gaseous pollutants at Jinsha, a remote mountain site in Central China. Scientia Sinica Chimica, 2011, 41, 136-144.	0.2	4
78	Temporal Variation of NO2 and HCHO Vertical Profiles Derived from MAX-DOAS Observation in Summer at a Rural Site of the North China Plain and Ozone Production in Relation to HCHO/NO2 Ratio. Atmosphere, 2022, 13, 860.	1.0	4
79	Measuring the Vertical Profiles of Aerosol Extinction in the Lower Troposphere by MAX-DOAS at a Rural Site in the North China Plain. Atmosphere, 2020, 11, 1037.	1.0	3
80	Analysis of atmospheric organic compounds by thermal desorption-comprehensive two-dimensional gas chromatography-flame ionization detection. Scientia Sinica Chimica, 2012, 42, 164-174.	0.2	3
81	Ozone and aerosols over the Tibetan Plateau. , 2022, , 287-302.		2
82	An empirical model for estimating the concentration of carbonyl sulfide in surface seawater from satellite measurements. Geophysical Research Letters, 2002, 29, 30-1-30-4.	1.5	1
83	Measurement report: Variations in surface SO ₂ and NO _{<i>x</i>} mixing ratios from 2004 to 2016 at a background site in the North China Plain. Atmospheric Chemistry and Physics, 2022, 22, 7071-7085.	1.9	1
84	Analysis of acid rain effects on vegetation in eco-regions in China based on AVHRR/NDVI. , 2010, , .		0