
Evgenya G Uchasova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9250801/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adipokine gene expression in adipocytes isolated from different fat depots of coronary artery disease patients. Archives of Physiology and Biochemistry, 2022, 128, 261-269.	1.0	8
2	Factors for early postoperative cognitive impairment in patients after coronary bypass surgery and carotid endarterectomy. Cardiovascular Therapy and Prevention (Russian Federation), 2022, 21, 3166.	0.4	0
3	Genetic forms and pathophysiology of essential arterial hypertension in minor indigenous peoples of Russia. BMC Cardiovascular Disorders, 2020, 20, 169.	0.7	5
4	The first experience of chemical angioplasty in patients with subarachnoid hemorrhage in the postoperative period. Pacific Medical Journal, 2020, , 60-63.	0.0	0
5	Adiponectin and insulin: molecular mechanisms of metabolic disorders. Bulletin of Siberian Medicine, 2020, 19, 188-197.	0.1	1
6	Key factors of inflammation and long-term prognosis in patients with myocardial infarction and visceral obesity. Pacific Medical Journal, 2020, , 77-82.	0.0	0
7	Adipocytes Directly Affect Coronary Artery Disease Pathogenesis via Induction of Adipokine and Cytokine Imbalances. Frontiers in Immunology, 2019, 10, 2163.	2.2	24
8	Relationship between epicardial and perivascular fatty tissue and adipokine-cytokine level in coronary artery disease patients. PLoS ONE, 2019, 14, e0208156.	1.1	16
9	<p>Leptin resistance: underlying mechanisms and diagnosis</p> . Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2019, Volume 12, 191-198.	1.1	175
10	The role of immune cells in the development of adipose tissue dysfunction in cardiovascular diseases. Russian Journal of Cardiology, 2019, , 92-98.	0.4	3
11	Biological markers and cardiac remodelling following the myocardial infarction. Aging, 2019, 11, 3523-3535.	1.4	2
12	A comparison of the genetic and clinical risk factors for arterial hypertension between indigenous and non-indigenous people of the Shoria Mountain Region. Clinical and Experimental Hypertension, 2018, 40, 324-331.	0.5	2
13	Localization of fat depots and cardiovascular risk. Lipids in Health and Disease, 2018, 17, 218.	1.2	104
14	Relationships between epicardial adipose tissue thickness and adipo-fibrokine indicator profiles post-myocardial infarction. Cardiovascular Diabetology, 2018, 17, 40.	2.7	37
15	Epicardial adipose tissue: pathophysiology and role in the development of cardiovascular diseases. Bulletin of Siberian Medicine, 2018, 17, 254-263.	0.1	9
16	Use of thrombin generation test for monitoring hemostasis in coronary bypass surgery. Clinical Hemorheology and Microcirculation, 2017, 66, 57-66.	0.9	3
17	Adipokine and Cytokine Profiles of Epicardial and Subcutaneous Adipose Tissue in Patients with Coronary Heart Disease. Bulletin of Experimental Biology and Medicine, 2017, 163, 608-611.	0.3	65
18	Relationship key factor of inflammation and the development of complications in the late period of myocardial infarction in patients with visceral obesity. BMC Cardiovascular Disorders, 2017, 17, 36.	0.7	8

#	Article	IF	CITATIONS
19	Effect of different doses of statins on the development of type 2 diabetes mellitus in patients with myocardial infarction. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2017, Volume 10, 481-489.	1.1	9
20	Serum neutrophil gelatinase-associated lipocalin the estimation of hospital prognosis in patients with ST-elevated myocardial infarction. PLoS ONE, 2017, 12, e0180816.	1.1	5
21	Biochemical markers of type 2 diabetes as a late complication of myocardial infarction: a case-control study. Archives of Medical Science, 2017, 2, 311-320.	0.4	10
22	Adipokine-cytokine profile of adipocytes of epicardial adipose tissue in ischemic heart disease complicated by visceral obesity. Obesity and Metabolism, 2017, 14, 38-45.	0.4	5
23	Relationship between smoking and indicators of systemic inflammation in patients with coronary heart disease. Klinicheskaia Meditsina, 2017, 95, 264-271.	0.2	3
24	Prognostic Value of Soluble ST2 During Hospitalization for ST-Segment Elevation Myocardial Infarction. Annals of Laboratory Medicine, 2016, 36, 313-319.	1.2	17
25	Serum Galectin and Renal Dysfunction in ST-Segment Elevation Myocardial Infarction. Disease Markers, 2016, 2016, 1-6.	0.6	4
26	Early Effects of Treatment Low-Dose Atorvastatin on Markers of Insulin Resistance and Inflammation in Patients with Myocardial Infarction. Frontiers in Pharmacology, 2016, 7, 324.	1.6	16
27	Glucose levels as a prognostic marker in patients with ST-segment elevation myocardial infarction: a case–control study. BMC Endocrine Disorders, 2016, 16, 31.	0.9	17
28	The role of adipose tissue and adipokines in the manifestation of type 2 diabetes in the long-term period following myocardial infarction. Diabetology and Metabolic Syndrome, 2016, 8, 24.	1.2	17
29	Prosthetic heart valve selection in women of childbearing age with acquired heart disease: a case report. Journal of Medical Case Reports, 2016, 10, 51.	0.4	7
30	Association of inflammatory markers and poor outcome in diabetic patients presenting with ST segment elevation myocardial infarction. Journal of Inflammation Research, 2015, 8, 107.	1.6	3
31	Dose-dependent effects of atorvastatin on myocardial infarction. Drug Design, Development and Therapy, 2015, 9, 3361.	2.0	8
32	Impact of recipient-related factors on structural dysfunction of xenoaortic bioprosthetic heart valves. Patient Preference and Adherence, 2015, 9, 389.	0.8	13
33	Lipid, adipokine and ghrelin levels in myocardial infarction patients with insulin resistance. BMC Cardiovascular Disorders, 2014, 14, 7.	0.7	18
34	Multivessel coronary artery disease, free fatty acids, oxidized LDL and its antibody in myocardial infarction. Lipids in Health and Disease, 2014, 13, 111.	1.2	23
35	Insulin resistance and inflammation markers in myocardial infarction. Journal of Inflammation Research, 2013, 6, 83.	1.6	22
36	Relationship between free fatty acids, insulin resistance markers, and oxidized lipoproteins in myocardial infarction and acute left ventricular failure. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2013, 6, 103.	1.1	12

Evgenya G Uchasova

#	Article	IF	CITATIONS
37	Plasminogen activator inhibitor-1, free fatty acids, and insulin resistance in patients with myocardial infarction. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2013, 6, 293.	1.1	8
38	Dose-dependent effects of atorvastatin in the hospitalisation period of myocardial infarction. Russian Journal of Cardiology, 2013, , 85-92.	0.4	1
39	Study of Anti-Inflammatory Action of Aurothiomalate, an Inhibitor of NF-κB. Bulletin of Experimental Biology and Medicine, 2011, 151, 190-193.	0.3	4
40	In Vitro Effect of Combined Hybrid Molecules from Vitamin E Analogues and Betulinic Acid on Macrophage Activity. Bulletin of Experimental Biology and Medicine, 2011, 151, 694-697.	0.3	2
41	Water-soluble polysaccharide obtained from Acorus calamus L. classically activates macrophages and stimulates Th1 response. International Immunopharmacology, 2010, 10, 933-942.	1.7	43
42	Effects of Plant Water-Soluble Polysaccharides on the Production of Immunoglobulins E and G1 by Lymphocytes of Mice Sensitized with Ovalbumin. Bulletin of Experimental Biology and Medicine, 2008, 146, 585-587.	0.3	2