Erdinc Oz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9250765/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Localized X-ray photoelectron impedance spectroscopy (LoXPIS) for capturing charge dynamics of an ionic liquid electrolyte within an energy storage device. Faraday Discussions, 2022, 236, 86-102.	3.2	1
2	Structural and magnetic characterisation of Co substituted Ni ₂ MnSb Heusler alloy: effect of cobalt substitution on magnetism and Curie temperature. Philosophical Magazine, 2021, 101, 242-256.	1.6	4
3	Magnetic Properties and Environmental Temperature Effects on Battery Performance of Na _{0.67} Mn _{0.5} Fe _{0.5} O ₂ . Energy Technology, 2021, 9, 2001130.	3.8	7
4	LiNi0.8Co0.15Ti0.05O2: synthesis by solid state reaction and investigation of structural and electrochemical properties with enhanced battery performance. Journal of Materials Science: Materials in Electronics, 2020, 31, 20527-20538.	2.2	2
5	Surface Propensity of Anions in a Binary Ionicâ€Liquid Mixture Assessed by Fullâ€Range Angleâ€Resolved Xâ€ray Photoelectron Spectroscopy and Surfaceâ€Tension Measurements. ChemPhysChem, 2020, 21, 2397-2401.	2.1	3
6	Investigation of Tiâ€substitution effects on structural and electrochemical properties of Na 0. 67 Mn 0 . 5 Fe 0 . 5 O 2 battery cells. International Journal of Energy Research, 2020, 44, 11794-11806.	4.5	7
7	Synthesis of Na2Ti3O7 nanorods by a V-assisted route and investigation of their battery performance. CrystEngComm, 2020, 22, 2483-2490.	2.6	8
8	Investigation of hybrid apacitor properties of ruthenium complexes. International Journal of Energy Research, 2019, 43, 6840.	4.5	7
9	Structural and magnetic properties of Ni2-xCoxMnSb (x: 0.00, 0.25, 0.50 and 1.00) Heusler alloys: The relationship between Curie temperature and lattice parameter. Intermetallics, 2019, 111, 106491.	3.9	4
10	Cationic versus anionic Pt complex: The performance analysis of a hybrid-capacitor, DFT calculation and electrochemical properties. Polyhedron, 2019, 157, 434-441.	2.2	8
11	X-ray Raman spectroscopy of lithium-ion battery electrolyte solutions in a flow cell. Journal of Synchrotron Radiation, 2018, 25, 537-542.	2.4	20
12	Structural, magnetic, electrical, and electrochemical properties of Sr–Co–Ru–O: A hybrid apacitor application. Journal of the American Ceramic Society, 2018, 101, 4572-4581.	3.8	7
13	Microstructural and Dielectric Properties of Naphthalene Based Polyamide/ β-Ni(OH)2 Nanocomposites. Micro and Nanosystems, 2018, 10, 47-56.	0.6	0
14	Investigations of the capacity fading mechanism of Na0.44MnO2via ex situ XAS and magnetization measurements. Dalton Transactions, 2018, 47, 17102-17108.	3.3	11
15	Ring-expanded iridium and rhodium <i>N</i> -heterocyclic carbene complexes: a comparative DFT study of heterocycle ring size and metal center diversity. Journal of Coordination Chemistry, 2017, 70, 1270-1284.	2.2	20
16	Thermally Induced Spin State Transition in LiCoO2 and Its Effects on Battery Performance. Electrochimica Acta, 2017, 248, 449-453.	5.2	12
17	Enhancement of battery performance of LiMn ₂ O ₄ : correlations between electrochemical and magnetic properties. RSC Advances, 2016, 6, 43823-43831.	3.6	17
18	Synthesis of ultra-thin nanobristles of Na-Mn-O compounds and their magnetic and structural properties. Ceramics International, 2016, 42, 17059-17066.	4.8	5

Erdinc Oz

#	Article	IF	CITATIONS
19	Electrochemical effects and magnetic properties of B substituted LiCoO 2 : Improving Li-battery performance. Journal of Alloys and Compounds, 2016, 657, 835-847.	5.5	28
20	Magnetic and microstructural properties of LiCrO2.Cr2O3 system by doping of the boron ions. Journal of Materials Science: Materials in Electronics, 2015, 26, 9178-9184.	2.2	2
21	Thermoelectric and mechanical properties of Mg–Al–Sb alloys. Journal of Materials Science: Materials in Electronics, 2015, 26, 1023-1032.	2.2	5
22	Magnetic and thermoelectric properties of B-substituted NaCoO2. Applied Physics A: Materials Science and Processing, 2015, 119, 1187-1196.	2.3	8
23	Growth mechanism and magnetic and electrochemical properties of Na0.44MnO2 nanorods as cathode material for Na-ion batteries. Materials Characterization, 2015, 105, 104-112.	4.4	39
24	Thermal and mechanical properties of La–Al–Sb alloys. Journal of Materials Science: Materials in Electronics, 2014, 25, 5331-5337.	2.2	1