Jose M Herrera-Ramirez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9250676/publications.pdf

Version: 2024-02-01

77 papers

1,013 citations

430754 18 h-index 501076 28 g-index

81 all docs

81 docs citations

81 times ranked 1079 citing authors

#	Article	IF	CITATIONS
1	Characterization of Al2024-CNTs composites produced by mechanical alloying. Powder Technology, 2011, 212, 390-396.	2.1	66
2	Metal matrix composites reinforced with carbon nanotubes by an alternative technique. Journal of Alloys and Compounds, 2017, 707, 257-263.	2.8	63
3	Micro-Raman study of the fatigue and fracture behaviour of single PA66 fibres: Comparison with single PET and PP fibres. Engineering Fracture Mechanics, 2006, 73, 2463-2475.	2.0	55
4	Microstructural characterization of Al-MWCNT composites produced by mechanical milling and hot extrusion. Journal of Alloys and Compounds, 2010, 495, 399-402.	2.8	55
5	Structural characterization of aluminium alloy 7075–graphite composites fabricated by mechanical alloying and hot extrusion. Materials & Design, 2014, 53, 1104-1111.	5.1	55
6	Al-Si Alloys. , 2017, , .		45
7	Characterization of Kevlar-29 fibers by tensile tests and nanoindentation. Journal of Alloys and Compounds, 2012, 536, S456-S459.	2.8	39
8	Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy. Journal of Alloys and Compounds, 2015, 643, S250-S255.	2.8	39
9	In the CO2 emission remediation by means of alternative geopolymers as substitutes for cements. Journal of Environmental Chemical Engineering, 2018, 6, 4878-4884.	3.3	34
10	Micro-Raman study of the fatigue fracture and tensile behaviour of polyamide (PA 66) fibres. Journal of Raman Spectroscopy, 2004, 35, 1063-1072.	1.2	29
11	Synthesis of aluminum alloy 7075-graphite composites by milling processes and hot extrusion. Journal of Alloys and Compounds, 2011, 509, S284-S289.	2.8	29
12	AA2024–CNTs composites by milling process after T6-temper condition. Journal of Alloys and Compounds, 2012, 536, S17-S20.	2.8	29
13	Micro-Raman study of the compressive behaviour of advanced PA66 polyamide fibres in a diamond-anvil cell. Vibrational Spectroscopy, 2005, 37, 83-90.	1.2	26
14	Formation of a metastable fcc phase and high Mg solubility in the Ti-Mg system by mechanical alloying. Powder Technology, 2020, 374, 348-352.	2.1	26
15	Microstructural and mechanical characterization in 7075 aluminum alloy reinforced by silver nanoparticles dispersion. Journal of Alloys and Compounds, 2010, 495, 394-398.	2.8	24
16	Microstructural mechanisms governing the fatigue failure of polyamide 66 fibres. Journal of Materials Science, 2006, 41, 7261-7271.	1.7	23
17	Sunlight Photocatalytic Performance of ZnO Nanoparticles Synthesized by Green Chemistry Using Different Botanical Extracts and Zinc Acetate as a Precursor. Molecules, 2022, 27, 6.	1.7	22
18	Influence of Size on the Microstructure and Mechanical Properties of an AISI 304L Stainless Steel—A Comparison between Bulk and Fibers. Materials, 2015, 8, 451-461.	1.3	19

#	Article	IF	Citations
19	High ionic conductivity dysprosium and tantalum Co-doped bismuth oxide electrolyte for low-temperature SOFCs. Ionics, 2020, 26, 4579-4586.	1.2	19
20	Dispersion and alignment quantification of carbon nanotubes in a polyvinyl alcohol matrix. Journal of Composite Materials, 2018, 52, 1617-1626.	1.2	18
21	Low-temperature hydrogenation of Mg-Ni-Nb2O5 alloy processed by high-pressure torsion. Journal of Alloys and Compounds, 2021, 878, 160309.	2.8	18
22	Microstructure of NiCoAlFeCuCr multi-component systems synthesized by mechanical alloying. Journal of Alloys and Compounds, 2011, 509, S279-S283.	2.8	17
23	Mechanical properties and interfacial phenomena in aluminum reinforced with carbon nanotubes manufactured by the sandwich technique. Journal of Composite Materials, 2017, 51, 1619-1629.	1.2	17
24	Mechanical properties of aluminum 7075 – Silver nanoparticles powder composite and its relationship with the powder particle size. Advanced Powder Technology, 2016, 27, 1694-1699.	2.0	16
25	B4C Particles Reinforced Al2024 Composites via Mechanical Milling. Metals, 2018, 8, 647.	1.0	16
26	Effect of Cr, Mo and Ti on the microstructure and Vickers hardness of multi-component systems. Journal of Alloys and Compounds, 2014, 615, S638-S644.	2.8	15
27	Mechanical and Corrosion Behavior of Plasma Electrolytic Oxidation Coatings on AZ31B Mg Alloy Reinforced with Multiwalled Carbon Nanotubes. Journal of Materials Engineering and Performance, 2020, 29, 1135-1145.	1.2	15
28	Effect of metallic addition on mechanical properties in an aluminum–graphite composite synthesized by means of mechanical milling. Journal of Alloys and Compounds, 2010, 495, 403-407.	2.8	14
29	Microstructure and mechanical properties of 7075 aluminum alloy nanostructured composites processed by mechanical milling and indirect hot extrusion. Materials Characterization, 2012, 63, 39-46.	1.9	12
30	Microstructural and magnetic behavior of an equiatomic NiCoAlFe alloy prepared by mechanical alloying. Journal of Alloys and Compounds, 2014, 615, S317-S323.	2.8	12
31	Mechanical Behavior of Multiwalled Carbon Nanotube Reinforced 7075 Aluminum Alloy Composites Prepared by Mechanical Milling and Hot Extrusion. Materials Research, 2019, 22, .	0.6	12
32	An Overview of the Synthesis, Characterization, and Applications of Carbon Nanotubes., 2019,, 47-75.		12
33	Room-temperature synthesis of χ-Al ₂ O ₃ and ruby (α-Cr:Al ₂ O ₃). CrystEngComm, 2018, 20, 3505-3511.	1.3	11
34	Wear resistance analysis of the aluminum 7075 alloy and the nanostructured aluminum 7075 - silver nanoparticles composites. Journal of Mining and Metallurgy, Section B: Metallurgy, 2016, 52, 163-170.	0.3	11
35	Fracture initiation revealed by variations in the fatigue fracture morphologies of PA 66 and PET fibers. Journal of Materials Science, 2005, 40, 1269-1272.	1.7	10
36	Electrochemical Study, Structural Characterization and Antimicrobial Activity of Silver and Copper Oxide (CuO) Nanoparticles Synthesized by a Green Method Using L-ascorbic Acid and Chitosan. International Journal of Electrochemical Science, 2019, , 6366-6375.	0.5	10

#	Article	IF	Citations
37	Microstructural evolution of mechanically alloyed Ni-based alloys under high temperature oxidation. Powder Technology, 2015, 281, 57-64.	2.1	9
38	Improvement of physical and mechanical properties on bio-polymer matrix composites using morphed graphene. Composites Science and Technology, 2019, 184, 107836.	3.8	9
39	Microstructure and microhardness of high entropy alloys with Zn addition: AlCoFeNiZn and AlCoFeNiMoTiZn. Advanced Powder Technology, 2021, 32, 4687-4696.	2.0	7
40	Al ₂₀₂₄ -CNTs composites by mechanical alloying. Microscopy and Microanalysis, 2010, 16, 1256-1257.	0.2	6
41	Cement-Matrix Composites Reinforced with Carbon Fibers as a Multifunctional Material. Microscopy and Microanalysis, 2014, 20, 1880-1881.	0.2	5
42	Sustainable Biocomposites for Structural Applications with Environmental Affinity. ACS Applied Materials & Description of the Acceptable o	4.0	5
43	Tensile fatigue of thermoplastic fibers. , 2018, , 595-618.		4
44	Theoretical and Experimental Study of CaMgSi Thermoelectric Properties. ACS Omega, 2022, 7, 15451-15458.	1.6	4
45	The Tensile Behavior of E-glass fibers. Microscopy and Microanalysis, 2012, 18, 784-785.	0.2	3
46	Nanohardness and Microstructure of NiCoAlFeCu and NiCoAlFeCuCr Alloys Produced by Mechanical Alloying. Microscopy and Microanalysis, 2014, 20, 2106-2107.	0.2	3
47	Effect of zinc oxide on the hydration, microstructure and compressive strength of ternary mixtures. Magazine of Concrete Research, 2021, 73, 420-431.	0.9	3
48	Acquisition of corneal electrical signals. , 2008, , .		2
49	TEM Characterization on the Nanocomposite Al 7075 and Silver Nanoparticles Synthesized by Powder Metallurgy. Materials Science Forum, 0, 644, 9-12.	0.3	2
50	Microstructural Characterization of NiCoAlFeCuCr High-Entropy Alloys. Microscopy and Microanalysis, 2010, 16, 1252-1253.	0.2	2
51	Turbostratic Carbon/Graphene Prepared via the Dry Ice in Flames Method and Its Purification Using Different Routes: A Comparative Study. Materials, 2022, 15, 2501.	1.3	2
52	Dispersion of CNTs in Aluminum 2024 Alloy by Milling Process. Materials Science Forum, 0, 691, 27-31.	0.3	1
53	Mechanical Study on Al-based Composites Synthesized by Mechanical Milling and Hot Extrusion. Materials Science Forum, 0, 691, 37-43.	0.3	1
54	Microstructural and Mechanical Properties of a 304 Stainless Steel Fiber. Microscopy and Microanalysis, 2012, 18, 782-783.	0.2	1

#	Article	lF	CITATIONS
55	Structural and Mechanical Characterization of Hi-Nicalon Fibers. Microscopy and Microanalysis, 2012, 18, 788-789.	0.2	1
56	NiCoAlFeCrTi High Entropy Alloys Produced In Solid State Microscopy and Microanalysis, 2012, 18, 1920-1921.	0.2	1
57	Microstructural Characterization of Inconel 718 for Aeronautical Use. Microscopy and Microanalysis, 2017, 23, 788-789.	0.2	1
58	Microstructural analysis of master alloys processed by mechanical alloying. Microscopy and Microanalysis, 2021, 27, 3390-3392.	0.2	1
59	THEORETICAL AND EXPERIMENTAL STUDY OF DIFFERENT CHEMICAL ROUTES TO SYNTHESIZE CRYSTALLINE SODIUM METASILICATE FROM SILICA-RICH SAND. Revista Mexicana De Ingeniera Quimica, 2019, 18, 581-588.	0.2	1
60	Hybrid Cements with ZnO Additions: Hydration, Compressive Strength and Microstructure. Molecules, 2022, 27, 1278.	1.7	1
61	Fe-Ti(O,N) Composites Produced from Mechanically Alloyed Powders. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 267-274.	0.1	O
62	Microstructural Characterization of Multi-Component Systems Produced by Mechanical Alloying. Materials Research Society Symposia Proceedings, 2009, 1243, 1.	0.1	0
63	Characterization of a Ni Base Alloy Obtained by Mechanical Alloying Followed by Conventional Sintering and SPS. Microscopy and Microanalysis, 2010, 16, 1250-1251.	0.2	O
64	Strengthening phases in the production of Al2024-CNTs composites by a milling process. Materials Research Society Symposia Proceedings, 2010, 1276, 1.	0.1	0
65	Characterization of a Ni Base Alloy Obtained by Mechanical Alloying Followed by SPS. Microscopy and Microanalysis, 2012, 18, 1940-1941.	0.2	O
66	Modification of the Kevlar-29 fibers tensile properties after a brine (NaCl) treatment. Microscopy and Microanalysis, 2012, 18, 778-779.	0.2	0
67	Characterization of a Ni-Co-Cr-Al bond coat produced by mechanical alloying. Microscopy and Microanalysis, 2012, 18, 1684-1685.	0.2	O
68	Microstructure Evolution in 2024 Aluminum Alloy Produced by Mechanical Alloying. Microscopy and Microanalysis, 2012, 18, 1924-1925.	0.2	0
69	Performance of PET post-consume bottle fiber into a concrete matrix. Microscopy and Microanalysis, 2013, 19, 1858-1859.	0.2	0
70	Based-Carbon Reinforcements for Aluminum Composites. Microscopy and Microanalysis, 2013, 19, 1570-1571.	0.2	0
71	Mechanical Properties of Silicon Carbide Fibers by Spherical Indentation Technique. Microscopy and Microanalysis, 2013, 19, 526-527.	0.2	0
72	Prediction Model of Deflections in PET Fiber Reinforced Concrete Beams. Materials Research Society Symposia Proceedings, 2014, 1611, 1-6.	0.1	0

#	Article	IF	CITATIONS
73	Equiatomic NiCoAlFeMoTiCrx (x= 0,1) High Entropy Alloys Produced by Mechanical Alloying. Microscopy and Microanalysis, 2014, 20, 882-883.	0.2	O
74	Characterization of Precipitate Phases in a NiCoAlFeCrTi High Entropy Alloy by Transmission Electron Microscopy. Microscopy and Microanalysis, 2015, 21, 2121-2122.	0.2	0
75	Characterization of Metal Matrix Composites Reinforced with Carbon Nanotubes by High Resolution Transmission Electron Microscopy. Microscopy and Microanalysis, 2017, 23, 1926-1927.	0.2	O
76	ACQUISITION OF CORNEAL ELECTRICAL SIGNALS BY A SIMPLE METHOD. Telecommunications and Radio Engineering (English Translation of Elektrosvyaz and Radiotekhnika), 2010, 69, 711-717.	0.2	0
77	Microstructural Behavior of the Intermetallic Compound CaMgSi Synthesized by Mechanical Milling and Spark Plasma Sintering. Microscopy and Microanalysis, 2020, 26, 2928-2930.	0.2	0