Giovanna Simonetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9250577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Valorization of Kiwi Peels: Fractionation, Bioactives Analyses and Hypotheses on Complete Peels Recycle. Foods, 2022, 11, 589.	4.3	7
2	A novel approach to control Botrytis cinerea fungal infections: uptake and biological activity of antifungals encapsulated in nanoparticle based vectors. Scientific Reports, 2022, 12, 7989.	3.3	15
3	Towards a new application of amaranth seed oil as an agent against <i>Candida albicans</i> . Natural Product Research, 2021, 35, 4621-4626.	1.8	13
4	Health Potential of Clery Strawberries: Enzymatic Inhibition and Anti-Candida Activity Evaluation. Molecules, 2021, 26, 1731.	3.8	5
5	Design, synthesis and biological evaluation of a series of iron and copper chelating deferiprone derivatives as new agents active against Candida albicans. Bioorganic and Medicinal Chemistry Letters, 2021, 42, 128087.	2.2	7
6	Antifungal activity of Mongolian medicinal plant extracts. Natural Product Research, 2020, 34, 449-455.	1.8	21
7	Phytochemical and biological characterization of Italian "sedano bianco di Sperlonga―Protected Geographical Indication celery ecotype: A multimethodological approach. Food Chemistry, 2020, 309, 125649.	8.2	25
8	<i>In vitro</i> antimicrobial activity of plant extracts against <i>Pseudomonas syringae</i> pv.< <i>actinidiae</i> causal agent of bacterial canker in kiwifruit. Plant Biosystems, 2020, 154, 100-106.	1.6	10
9	Anti-Candida albicans biofilm activity of extracts from two selected indigenous Algerian plants: Clematis flammula and Fraxinus angustifolia. Journal of Herbal Medicine, 2020, 20, 100319.	2.0	14
10	Antifungal Activity of Phenolic and Polyphenolic Compounds from Different Matrices of Vitis vinifera L. against Human Pathogens. Molecules, 2020, 25, 3748.	3.8	47
11	Chemico-Biological Characterization of Torpedino Di Fondi® Tomato Fruits: A Comparison with San Marzano Cultivar at Two Ripeness Stages. Antioxidants, 2020, 9, 1027.	5.1	12
12	Anti-Candida Biofilm Activity of Pterostilbene or Crude Extract from Non-Fermented Grape Pomace Entrapped in Biopolymeric Nanoparticles. Molecules, 2019, 24, 2070.	3.8	26
13	Polyphenols from Lycium barbarum (Goji) Fruit European Cultivars at Different Maturation Steps: Extraction, HPLC-DAD Analyses, and Biological Evaluation. Antioxidants, 2019, 8, 562.	5.1	33
14	Searching for new agents active against Candida albicans biofilm: A series of indole derivatives, design, synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2019, 165, 93-106.	5.5	28
15	Phenolic content and in vitro antifungal activity of unripe grape extracts from agro-industrial wastes. Natural Product Research, 2019, 33, 803-807.	1.8	8
16	A multi-methodological approach in the study of Italian PDO "Cornetto di Pontecorvo―red sweet pepper. Food Chemistry, 2018, 255, 120-131.	8.2	38
17	In vitro biofilms and antifungal susceptibility of dermatophyte and nonâ€dermatophyte moulds involved in foot mycosis. Mycoses, 2018, 61, 79-87	4.0	19
18	Plant Products with Antifungal Activity: From Field to Biotechnology Strategies. , 2018, , 35-71.		0

Plant Products with Antifungal Activity: From Field to Biotechnology Strategies. , 2018, , 35-71. 18

GIOVANNA SIMONETTI

#	Article	IF	CITATIONS
19	Chitosan oligosaccharides affect xanthone and VOC biosynthesis in Hypericum perforatum root cultures and enhance the antifungal activity of root extracts. Plant Cell Reports, 2018, 37, 1471-1484.	5.6	20
20	The Effect of Poly (Glycerol Sebacate) Incorporation within Hybrid Chitin–Lignin Sol–Gel Nanofibrous Scaffolds. Materials, 2018, 11, 451.	2.9	23
21	Prenylated flavonoids and total extracts from Morus nigra L. root bark inhibit in vitro growth of plant pathogenic fungi. Plant Biosystems, 2017, 151, 783-787.	1.6	6
22	Antiâ€Dermatophyte and Antiâ€ <i>Malassezia</i> Activity of Extracts Rich in Polymeric Flavanâ€3â€ols Obtained from <i>Vitis vinifera</i> Seeds. Phytotherapy Research, 2017, 31, 124-131.	5.8	20
23	Chemical Composition and Bio-efficacy of Essential Oils from Italian Aromatic Plants: <i>Mentha suaveolens, Coridothymus capitatus, Origanum hirtum</i> and <i>Rosmarinus officinalis</i> . Natural Product Communications, 2016, 11, 1934578X1601101.	0.5	17
24	MC1568 inhibits HDAC6/8 activity and influenza A virus replication in lung epithelial cells: role of Hsp90 acetylation. Future Medicinal Chemistry, 2016, 8, 2017-2031.	2.3	33
25	Exploring the anti-biofilm activity of cinnamic acid derivatives in Candida albicans. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5931-5935.	2.2	22
26	<i>In vitro</i> antifungal activity of extracts obtained from <i>Hypericum perforatum</i> adventitious roots cultured in a mist bioreactor against planktonic cells and biofilm of <i>Malassezia furfur</i> . Natural Product Research, 2016, 30, 544-550.	1.8	39
27	Synthesis of Cyclic Imides (Methylphtalimides, Carboxylic Acid Phtalimides and Itaconimides) and Evaluation of their Antifungal Potential. Medicinal Chemistry, 2016, 12, 647-654.	1.5	14
28	Influenza A Virus Infection of Intestinal Epithelial Cells Enhances the Adhesion Ability of Crohn's Disease Associated Escherichia coli Strains. PLoS ONE, 2015, 10, e0117005.	2.5	11
29	Xanthones from roots, hairy roots and cell suspension cultures of selected Hypericum species and their antifungal activity against Candida albicans. Plant Cell Reports, 2015, 34, 1953-1962.	5.6	39
30	Evaluation of Anti- <i>Candida</i> Activity of <i>Vitis vinifera</i> L. Seed Extracts Obtained from Wine and Table Cultivars. BioMed Research International, 2014, 2014, 1-11.	1.9	32
31	Efficient Electrochemical <i>N</i> -Alkylation of <i>N</i> -Boc-Protected 4-Aminopyridines: Towards New Biologically Active Compounds. ISRN Organic Chemistry, 2014, 2014, 1-10.	1.0	3
32	Activity of caffeic acid derivatives against Candida albicans biofilm. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1502-1505.	2.2	58
33	Synthesis, biological evaluation and structure–activity correlation study of a series of imidazol-based compounds as Candida albicans inhibitors. European Journal of Medicinal Chemistry, 2014, 83, 665-673.	5.5	15
34	Solid Lipid Nanoparticles as Effective Reservoir Systems for Long-Term Preservation of Multidose Formulations. AAPS PharmSciTech, 2013, 14, 847-853.	3.3	13
35	Bioassay-guided fractionation of extracts from Hypericum perforatum inÂvitro roots treated with carboxymethylchitosans and determination of antifungal activity against human fungal pathogens. Plant Physiology and Biochemistry, 2013, 70, 342-347.	5.8	25
36	Chemical composition and antifungal activity of <i>Hypericum perforatum</i> subsp. <i>angustifolium</i> roots from wild plants and plants grown under controlled conditions. Plant Biosystems, 2013, 147, 557-562.	1.6	23

#	Article	IF	CITATIONS
37	Synthesis and antifungal activity of a new series of 2-(1H-imidazol-1-yl)-1-phenylethanol derivatives. European Journal of Medicinal Chemistry, 2012, 49, 334-342.	5.5	36
38	A three-step culture system to increase the xanthone production and antifungal activity of Hypericum perforatum subsp. angustifolium inÂvitro roots. Plant Physiology and Biochemistry, 2012, 57, 54-58.	5.8	20
39	Add-on of aripiprazole improves outcome in clozapine-resistant schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 1112-1116.	4.8	11
40	Root cultures of Hypericum perforatum subsp. angustifolium elicited with chitosan and production of xanthone-rich extracts with antifungal activity. Applied Microbiology and Biotechnology, 2011, 91, 977-987.	3.6	50
41	Non-Cancer Uses of Histone Deacetylase Inhibitors: Effects on Infectious Diseases and β-Hemoglobinopathies+. Current Topics in Medicinal Chemistry, 2009, 9, 272-291.	2.1	44
42	Discovery of uracil-based histone deacetylase inhibitors able to reduce acquired antifungal resistance and trailing growth in Candida albicans. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1221-1225.	2.2	84
43	Histone deacetylase inhibitors may reduce pathogenicity and virulence in <i>Candida albicans</i> . FEMS Yeast Research, 2007, 7, 1371-1380.	2.3	44
44	Increase of activity of tioconazole against resistant microorganisms by the addition of butylated hydroxyanisole. International Journal of Antimicrobial Agents, 2003, 22, 439-443.	2.5	12
45	Contact imidazole activity against resistant bacteria and fungi. International Journal of Antimicrobial Agents, 2001, 17, 389-393.	2.5	14
46	Propyl gallate increases in vitro antifungal imidazole activity against Candida albicans. International Journal of Antimicrobial Agents, 2000, 16, 73-76.	2.5	20
47	Susceptibility assays of Candida tropicalis to miconazole. Journal of Microbiological Methods, 1997, 30, 221-229.	1.6	3
48	Plant tissue electrode for the determination of atrazine. Analytica Chimica Acta, 1995, 316, 79-82.	5.4	41
49	Antifungal Agents. 9. 3-Aryl-4-[.alpha(1H-imidazol-1-yl)arylmethyl]pyrroles: A New Class of Potent Anti-Candida Agents. Journal of Medicinal Chemistry, 1995, 38, 4223-4233.	6.4	44
50	Cholinesterase based bioreactor for determination of pesticides. Sensors and Actuators B: Chemical, 1994, 19, 689-693.	7.8	24
51	The Inhibitory Action of Fluconazole on Yeast-to-Mycelial Phase Conversion in Candida albicans. Drug Investigation, 1992, 4, 15-19.	0.6	5
52	Research on antibacterial and antifungal agents. 16. Synthesis and antifungal activities of 1-[α-(1-naphthyl)benzyl]imidazole derivatives and related 2-naphthyl isomers. European Journal of Medicinal Chemistry, 1992, 27, 693-699.	5.5	13
53	Researches on Antibacterial and Antifungal Agents, XIV: Thiophene Analogues of Bifonazole. Archiv Der Pharmazie, 1992, 325, 199-204.	4.1	12
54	Antibacterial and Antifungal Agents, XV: Synthesis and Antifungal Activity of Structural Analogues of Bifonazole and Ketoconazole. Archiv Der Pharmazie, 1992, 325, 687-694.	4.1	3