Minna Kellomäki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9250442/publications.pdf Version: 2024-02-01

		117625	133252
130	4,303	34	59
papers	citations	h-index	g-index
131	131	131	6050
all docs	docs citations	times ranked	citing authors

MINNA KELLOMÃØL

#	Article	IF	CITATIONS
1	Two-step crosslinking to enhance the printability of methacrylated gellan gum biomaterial ink for extrusion-based 3D bioprinting. Bioprinting, 2022, 25, e00185.	5.8	23
2	Injectable and selfâ€healing biobased composite hydrogels as future anticancer therapeutic biomaterials. Nano Select, 2022, 3, 1213-1222.	3.7	4
3	Photocross-linkable Methacrylated Polypeptides and Polysaccharides for Casting, Injecting, and 3D Fabrication. Biomacromolecules, 2021, 22, 481-493.	5.4	11
4	Reduced graphene oxide integrated poly(ionic liquid) functionalized nano-fibrillated cellulose composite paper with improved toughness, ductility and hydrophobicity. Materials Advances, 2021, 2, 948-952.	5.4	2
5	Impact of Glass Composition on Hydrolytic Degradation of Polylactide/Bioactive Glass Composites. Materials, 2021, 14, 667.	2.9	7
6	Optical projection tomography as a quantitative tool for analysis of cell morphology and density in 3D hydrogels. Scientific Reports, 2021, 11, 6538.	3.3	11
7	Comprehensive characterisation of the compressive behaviour of hydrogels using a new modelling procedure and redefining compression testing. Materials Today Communications, 2021, 28, 102518.	1.9	2
8	Chemical modification strategies for viscosity-dependent processing of gellan gum. Carbohydrate Polymers, 2021, 269, 118335.	10.2	14
9	Co-culture of human induced pluripotent stem cell-derived retinal pigment epithelial cells and endothelial cells on double collagen-coated honeycomb films. Acta Biomaterialia, 2020, 101, 327-343.	8.3	18
10	Bioactive glass ions for <i>in vitro</i> osteogenesis and microvascularization in gellan gum ollagen hydrogels. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1332-1342.	3.4	11
11	A tube-source X-ray microtomography approach for quantitative 3D microscopy of optically challenging cell-cultured samples. Communications Biology, 2020, 3, 548.	4.4	6
12	Materials and Orthopedic Applications for Bioresorbable Inductively Coupled Resonance Sensors. ACS Applied Materials & Interfaces, 2020, 12, 31148-31161.	8.0	17
13	Evaluation of scaffold microstructure and comparison of cell seeding methods using micro-computed tomography-based tools. Journal of the Royal Society Interface, 2020, 17, 20200102.	3.4	13
14	Fabrication and Characterization of a Wireless Bioresorbable Pressure Sensor. Advanced Materials Technologies, 2019, 4, 1900428.	5.8	22
15	Polyethylene Terephthalate Textiles Enhance the Structural Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Materials, 2019, 12, 1805.	2.9	17
16	Carbon nanotube micropillars trigger guided growth of complex human neural stem cells networks. Nano Research, 2019, 12, 2894-2899.	10.4	27
17	Effect of Melt-Derived Bioactive Glass Particles on the Properties of Chitosan Scaffolds. Journal of Functional Biomaterials, 2019, 10, 38.	4.4	9
18	Design of modular gellan gum hydrogel functionalized with avidin and biotinylated adhesive ligands for cell culture applications. PLoS ONE, 2019, 14, e0221931.	2.5	10

#	Article	IF	CITATIONS
19	Screening of Hydrogels for Human Pluripotent Stem Cell–Derived Neural Cells: Hyaluronanâ€Polyvinyl Alcoholâ€Collagenâ€Based Interpenetrating Polymer Network Provides an Improved Hydrogel Scaffold. Macromolecular Bioscience, 2019, 19, e1900096.	4.1	16
20	Mechanically Biomimetic Gelatin–Gellan Gum Hydrogels for 3D Culture of Beating Human Cardiomyocytes. ACS Applied Materials & Interfaces, 2019, 11, 20589-20602.	8.0	70
21	Bioactive glass ions induce efficient osteogenic differentiation of human adipose stem cells encapsulated in gellan gum and collagen type I hydrogels. Materials Science and Engineering C, 2019, 99, 905-918.	7.3	38
22	Bioresorbable Conductive Wire with Minimal Metal Content. ACS Biomaterials Science and Engineering, 2019, 5, 1134-1140.	5.2	5
23	Characterization of the microstructure of hydrazone crosslinked polysaccharide-based hydrogels through rheological and diffusion studies. Materials Science and Engineering C, 2019, 94, 1056-1066.	7.3	61
24	Soft hydrazone crosslinked hyaluronan- and alginate-based hydrogels as 3D supportive matrices for human pluripotent stem cell-derived neuronal cells. Reactive and Functional Polymers, 2018, 124, 29-39.	4.1	25
25	Hydrazone crosslinked hyaluronan-based hydrogels for therapeutic delivery of adipose stem cells to treat corneal defects. Materials Science and Engineering C, 2018, 85, 68-78.	7.3	48
26	Composite Hydrogels Using Bioinspired Approach with in Situ Fast Gelation and Self-Healing Ability as Future Injectable Biomaterial. ACS Applied Materials & Interfaces, 2018, 10, 11950-11960.	8.0	43
27	Breath figures in tissue engineering and drug delivery: State-of-the-art and future perspectives. Acta Biomaterialia, 2018, 66, 44-66.	8.3	49
28	Simulation of the Readout Methods for Inductively Coupled High-Frequency Resonance Sensors. Proceedings (mdpi), 2018, 2, 923.	0.2	0
29	An Inductively Coupled Biodegradable Capacitive Pressure Sensor. Proceedings (mdpi), 2018, 2, .	0.2	3
30	Nanocellulose and chitosan based films as low cost, green piezoelectric materials. Carbohydrate Polymers, 2018, 202, 418-424.	10.2	101
31	Knitted 3D Scaffolds of Polybutylene Succinate Support Human Mesenchymal Stem Cell Growth and Osteogenesis. Stem Cells International, 2018, 2018, 1-11.	2.5	19
32	Langmuir-Schaefer film deposition onto honeycomb porous films for retinal tissue engineering. Acta Biomaterialia, 2017, 54, 138-149.	8.3	32
33	Bioamine-crosslinked gellan gum hydrogel for neural tissue engineering. Biomedical Materials (Bristol), 2017, 12, 025014.	3.3	61
34	The production of injectable hydrazone crosslinked gellan gum-hyaluronan-hydrogels with tunable mechanical and physical properties. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 383-391.	3.1	26
35	Collagen-immobilized polyimide membranes for retinal pigment epithelial cell adherence and proliferation. Cogent Chemistry, 2017, 3, 1292593.	2.5	4
36	Non-destructive and wireless monitoring of biodegradable polymers. Sensors and Actuators B: Chemical, 2017, 251, 1018-1025.	7.8	9

#	ARTICLE	IF	CITATIONS
37	Direct Laser Writing of Tubular Microtowers for 3D Culture of Human Pluripotent Stem Cell-Derived Neuronal Cells. ACS Applied Materials & Interfaces, 2017, 9, 25717-25730.	8.0	35
38	Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering. Annals of Biomedical Engineering, 2017, 45, 1015-1026.	2.5	36
39	In Vitro Degradation of Borosilicate Bioactive Glass and Poly(l-lactide-co-ε-caprolactone) Composite Scaffolds. Materials, 2017, 10, 1274.	2.9	17
40	Human Adipose Stem Cells Differentiated on Braided Polylactide Scaffolds Is a Potential Approach for Tendon Tissue Engineering. Tissue Engineering - Part A, 2016, 22, 513-523.	3.1	43
41	Muraglitazar-Eluting Bioabsorbable Vascular Stent Inhibits Neointimal Hyperplasia in Porcine Iliac Arteries. Journal of Vascular and Interventional Radiology, 2015, 26, 124-130.	0.5	6
42	Effects of chitosan and bioactive glass modifications of knitted and rolled polylactide-based 96/4 L/D scaffolds on chondrogenic differentiation of adipose stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 55-65.	2.7	17
43	Improved dimensional stability with bioactive glass fibre skeleton in poly(lactide-co-glycolide) porous scaffolds for tissue engineering. Materials Science and Engineering C, 2015, 56, 457-466.	7.3	27
44	Bioactive glass ions as strong enhancers of osteogenic differentiation in human adipose stem cells. Acta Biomaterialia, 2015, 21, 190-203.	8.3	76
45	Optical projection tomography can be used to investigate spatial distribution of chondrocytes in three-dimensional biomaterial scaffolds for cartilage tissue engineering. Bio-Medical Materials and Engineering, 2014, 24, 1549-1553.	0.6	1
46	Ormocomp-Modified Glass Increases Collagen Binding and Promotes the Adherence and Maturation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells. Langmuir, 2014, 30, 14555-14565.	3.5	23
47	Flexor tendon healing within the tendon sheath using bioabsorbable poly-l/d-lactide 96/4 suture. A histological in vivo study with rabbits. Journal of Materials Science: Materials in Medicine, 2014, 25, 1319-1325.	3.6	2
48	Degradation mechanisms of bioresorbable polyesters. Part 1. Effects of random scission, end scission and autocatalysis. Acta Biomaterialia, 2014, 10, 2223-2232.	8.3	109
49	Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerization. Materials Science and Engineering C, 2014, 43, 280-289.	7.3	37
50	Comparison of Chondroitin Sulfate and Hyaluronic Acid Doped Conductive Polypyrrole Films for Adipose Stem Cells. Annals of Biomedical Engineering, 2014, 42, 1889-1900.	2.5	30
51	Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering. Journal of Materials Science: Materials in Medicine, 2014, 25, 1129-1136.	3.6	119
52	Degradation mechanisms of bioresorbable polyesters. Part 2. Effects of initial molecular weight and residual monomer. Acta Biomaterialia, 2014, 10, 2233-2240.	8.3	48
53	Chemical and topographical patterning of hydrogels for neural cell guidance <i>in vitro</i> . Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 253-270.	2.7	27

⁵⁴ Impedance spectra of polypyrrole coated platinum electrodes. , 2013, 2013, 539-42.

3

#	Article	IF	CITATIONS
55	Novel Polypyrrole-Coated Polylactide Scaffolds Enhance Adipose Stem Cell Proliferation and Early Osteogenic Differentiation. Tissue Engineering - Part A, 2013, 19, 882-892.	3.1	85
56	Hydrolytic degradation of composites of poly(L-lactide-co-É>-caprolactone) 70/30 and β-tricalcium phosphate. Journal of Biomaterials Applications, 2013, 28, 529-543.	2.4	13
57	An in vitro study of composites of poly(L-lactide-co-ε-caprolactone), β-tricalcium phosphate and ciprofloxacin intended for local treatment of osteomyelitis. Biomatter, 2013, 3, e23162.	2.6	16
58	Autologous adipose stem cells and polylactide discs in the replacement of the rabbit temporomandibular joint disc. Journal of the Royal Society Interface, 2013, 10, 20130287.	3.4	49
59	Dexamethasoneâ€eluting Vascular Stents. Basic and Clinical Pharmacology and Toxicology, 2013, 112, 296-301.	2.5	13
60	Strength retention behavior of oriented PLLA, 96L/4D PLA, and 80L/20D,L PLA. Biomatter, 2013, 3, .	2.6	8
61	Demonstrating the mechanism and efficacy of waterâ€induced shape memory and the influence of water on the thermal properties of oriented poly(d,lâ€iactide). Journal of Applied Polymer Science, 2013, 130, 4209-4218.	2.6	5
62	Processing and sustained in vitro release of rifampicin containing composites to enhance the treatment of osteomyelitis. Biomatter, 2012, 2, 213-225.	2.6	12
63	Characterizing and optimizing poly- <scp>l</scp> -lactide-co-ε-caprolactone membranes for urothelial tissue engineering. Journal of the Royal Society Interface, 2012, 9, 3444-3454.	3.4	35
64	Direct laser writing and geometrical analysis of scaffolds with designed pore architecture for three-dimensional cell culturing. Journal of Micromechanics and Microengineering, 2012, 22, 115016.	2.6	36
65	Biodegradable encapsulation for inductively measured resonance circuit. , 2012, , .		4
66	The Effect of pH on the Degradation of Biodegradable Poly(L-Lactide-Co-Glycolide) 80/20 Urethral Stent Material In Vitro. Journal of Endourology, 2012, 26, 701-705.	2.1	5
67	Preclinical Evaluation of New Indomethacin-Eluting Biodegradable Urethral Stent. Journal of Endourology, 2012, 26, 387-392.	2.1	16
68	A novel radiopaque biodegradable stent for pancreatobiliary applications – The first human phase I trial in the pancreas. Pancreatology, 2012, 12, 264-271.	1.1	27
69	Peptide-functionalized chitosan–DNA nanoparticles for cellular targeting. Carbohydrate Polymers, 2012, 89, 948-954.	10.2	13
70	Twoâ€photon microfabrication of poly(ethylene glycol) diacrylate and a novel biodegradable photopolymer—comparison of processability for biomedical applications. Polymers for Advanced Technologies, 2012, 23, 992-1001.	3.2	19
71	Using the Taguchi Method to Obtain More Finesse to the Biodegradable Fibers. Methods in Molecular Biology, 2012, 868, 143-154.	0.9	1
72	Knitted polylactide 96/4 L/D structures and scaffolds for tissue engineering: Shelf life, in vitro and in vivo studies. Biomatter, 2011, 1, 102-113.	2.6	18

#	Article	IF	CITATIONS
73	Bioactive composite for keratoprosthesis skirt. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1700-1708.	3.1	22
74	A simple and high production rate manufacturing method for submicron polymer fibres. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, e239-e243.	2.7	22
75	Processâ€induced monomer on a medicalâ€grade polymer and its effect on shortâ€term hydrolytic degradation. Journal of Applied Polymer Science, 2011, 119, 2996-3003.	2.6	16
76	Comparison of a poly- <scp>l</scp> -lactide-co- <i>É></i> -caprolactone and human amniotic membrane for urothelium tissue engineering applications. Journal of the Royal Society Interface, 2011, 8, 671-677.	3.4	33
77	In vivo testing of a biodegradable woven fabric made of bioactive glass fibers and PLGA ₈₀ —A pilot study in the rabbit. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 93B, 573-580.	3.4	14
78	Effect of hot drawing on properties of wetâ€spun poly(<scp>L,D</scp> â€lactide) copolymer multifilament fibers. Journal of Applied Polymer Science, 2010, 115, 608-615.	2.6	4
79	Effect of proteinâ€loading on properties of wetâ€spun poly(<scp>L,D</scp> â€lactide) multifilament fibers. Journal of Applied Polymer Science, 2010, 116, 2174-2180.	2.6	4
80	Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation. Biomaterials, 2010, 31, 4731-4739.	11.4	122
81	Porous polylactide/l̂²-tricalcium phosphate composite scaffolds for tissue engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 366-373.	2.7	29
82	Use of adipose stem cells and polylactide discs for tissue engineering of the temporomandibular joint disc. Journal of the Royal Society Interface, 2010, 7, 177-188.	3.4	41
83	Biocompatibility of New Drug-eluting Biodegradable Urethral Stent Materials. Urology, 2010, 75, 229-234.	1.0	21
84	A novel technique for hepaticojejunostomy for nondilated bile ducts: a purse-string anastomosis with an intra-anastomotic biodegradable biliary stent. American Journal of Surgery, 2010, 200, 124-130.	1.8	26
85	Effect of process parameters on properties of wetâ€spun poly(<scp>L,D</scp> â€lactide) copolymer multifilament fibers. Journal of Applied Polymer Science, 2009, 113, 2683-2692.	2.6	5
86	Biodegradable braided poly(lacticâ€coâ€glycolic acid) urethral stent combined with dutasteride in the treatment of acute urinary retention due to benign prostatic enlargement: a pilot study. BJU International, 2009, 103, 626-629.	2.5	25
87	Urethral <i>in situ</i> biocompatibility of new drugâ€eluting biodegradable stents: an experimental study in the rabbit. BJU International, 2009, 103, 1132-1135.	2.5	17
88	Influence of medical sterilization on ACA flip chip joints using conformal coating. Microelectronics Reliability, 2009, 49, 92-98.	1.7	7
89	Growth and Osteogenic Differentiation of Adipose Stem Cells on PLA/Bioactive Glass and PLA/β-TCP Scaffolds. Tissue Engineering - Part A, 2009, 15, 1473-1480.	3.1	110
90	Comparison of Biomaterials and Extracellular Matrices as a Culture Platform for Multiple, Independently Derived Human Embryonic Stem Cell Lines. Tissue Engineering - Part A, 2009, 15, 1775-1785.	3.1	80

#	Article	IF	CITATIONS
91	Bioabsorbable poly-l/d-lactide (PLDLA) 96/4 triple-stranded bound suture in the modified Kessler repair: an ex vivo static and cyclic tensile testing study in a porcine extensor tendon model. Journal of Materials Science: Materials in Medicine, 2009, 20, 1963-1969.	3.6	13
92	Tissue-Engineered Small-Caliber Vascular Graft Based on a Novel Biodegradable Composite Fibrin-Polylactide Scaffold. Tissue Engineering - Part A, 2009, 15, 1909-1918.	3.1	98
93	Effects of conformal coating on anisotropically conductive adhesive joints; a medical perspective. Soldering and Surface Mount Technology, 2009, 21, 4-11.	1.5	4
94	Composite coating structure in an implantable electronic device. Soldering and Surface Mount Technology, 2009, 21, 24-29.	1.5	8
95	InÂvivo degradation of poly(DTE carbonate) membranes. Analysis of the tissue reactions and mechanical properties. Journal of Materials Science: Materials in Medicine, 2008, 19, 53-58.	3.6	11
96	Solubility and phase separation of poly(<scp>L,D</scp> ″actide) copolymers. Journal of Applied Polymer Science, 2008, 110, 2399-2404.	2.6	20
97	Long-term bone tissue reaction to polyethylene oxide/polybutylene terephthalate copolymer (Polyactive®) in metacarpophalangeal joint reconstruction. Biomaterials, 2008, 29, 2509-2515.	11.4	31
98	Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part II: In vitro degradation. Acta Biomaterialia, 2008, 4, 156-164.	8.3	34
99	The use of biodegradable scaffold as an alternative to silicone implant arthroplasty for small joint reconstruction: An experimental study in minipigs. Biomaterials, 2008, 29, 683-691.	11.4	31
100	A review of rapid prototyping techniques for tissue engineering purposes. Annals of Medicine, 2008, 40, 268-280.	3.8	659
101	A New Biodegradable Braided Self-Expandable PLGA Prostatic Stent: An Experimental Study in the Rabbit. Journal of Endourology, 2008, 22, 1065-1070.	2.1	18
102	Fiber-reinforced bioactive and bioabsorbable hybrid composites. Biomedical Materials (Bristol), 2008, 3, 034106.	3.3	10
103	Biocompatibility of Different Biopolymers After Being Implanted Into the Rat Cochlea. Otology and Neurotology, 2008, 29, 714-719.	1.3	7
104	Three Composites of Bioactive Glass and PLA-Copolymers: Mass Loss and Water Absorption in Vitro. Key Engineering Materials, 2007, 330-332, 431-434.	0.4	1
105	Fat Tissue. Journal of Craniofacial Surgery, 2007, 18, 325-335.	0.7	49
106	The Strength of the 6-Strand Modified Kessler Repair Performed With Triple-Stranded or Triple-Stranded Bound Suture in a Porcine Extensor Tendon Model: An Ex Vivo Study. Journal of Hand Surgery, 2007, 32, 510-517.	1.6	23
107	Poly-L-D-Lactic Acid Scaffold in the Repair of Porcine Knee Cartilage Lesions. Tissue Engineering, 2007, 13, 1347-1355.	4.6	39
108	1852: A Pilot Study of a New Biodegradable Braided PLGA Urethral Stent in the Treatment of Acute Urinary Retention. Journal of Urology, 2007, 177, 615-615.	0.4	38

#	Article	IF	CITATIONS
109	Studies of P(L/D)LA 96/4 non-woven scaffolds and fibres; properties, wettability and cell spreading before and after intrusive treatment methods. Journal of Materials Science: Materials in Medicine, 2007, 18, 1253-1261.	3.6	15
110	Tissue biocompatibility of new biodegradable drug-eluting stent materials. Journal of Materials Science: Materials in Medicine, 2007, 18, 1543-1547.	3.6	17
111	Wireless and inductively powered implant for measuring electrocardiogram. Medical and Biological Engineering and Computing, 2007, 45, 1163-1174.	2.8	36
112	A Novel Biodegradable Biliary Stent in the Normal Duct Hepaticojejunal Anastomosis: an 18-month Follow-up in a Large Animal Model. Journal of Gastrointestinal Surgery, 2007, 11, 750-757.	1.7	23
113	Tyrosine-derived polycarbonate membrane in treating mandibular bone defects. An experimental study. Journal of the Royal Society Interface, 2006, 3, 629-635.	3.4	19
114	Effect of FGF and Polylactide Scaffolds on Calvarial Bone Healing With Growth Factor on Biodegradable Polymer Scaffolds. Journal of Craniofacial Surgery, 2006, 17, 935-942.	0.7	37
115	Fibre reinforced bioresorbable composites for spinal surgery. Acta Biomaterialia, 2006, 2, 575-587.	8.3	26
116	PERSISTENCE OF INDENTATION WITH BIOABSORBABLE POLY-I/d-LACTIDE VERSUS SILICONE SPONGE SCLERAL BUCKLING IMPLANTS. Retina, 2005, 25, 581-586.	1.7	8
117	Drug-Eluting Biodegradable Poly-D/L-Lactic Acid Vascular Stents: An Experimental Pilot Study. Journal of Endovascular Therapy, 2005, 12, 371-379.	1.5	59
118	Bioabsorbable and Bioactive Composite Structures from SiO ₂ Glassfibres and Polylactides. Key Engineering Materials, 2004, 254-256, 549-552.	0.4	1
119	Biodegradable Self-Expanding Poly-L/D-Lactic Acid Vascular Stent:A Pilot Study in Canine and Porcine Iliac Arteries. Journal of Endovascular Therapy, 2004, 11, 712-718.	1.5	35
120	In vitroandin vivobehavior of self-reinforced bioabsorbable polymer and self-reinforced bioabsorbable polymer/bioactive glass composites. Journal of Biomedical Materials Research - Part A, 2004, 69A, 699-708.	4.0	73
121	Tissue reactions of subcutaneously implanted mixture of epsilon-caprolactone-lactide copolymer and tricalcium phosphate. An electron microscopic evaluation in sheep. Journal of Materials Science: Materials in Medicine, 2003, 14, 913-918.	3.6	16
122	In Vitro Degradation of Osteoconductive Poly-L/DL-Lactide / β-TCP Composites. Key Engineering Materials, 2003, 254-256, 509-512.	0.4	14
123	Holding Power of Bioabsorbable Self-Reinforced Poly-L/DL-Lactide 70/30 Tacks and Miniscrews in Human Cadaver Bone. Journal of Craniofacial Surgery, 2003, 14, 171-175.	0.7	7
124	Requirements for Quantitative Analysis of Intimal Reaction in Arteries Treated With Intraluminal Stents. Journal of Endovascular Therapy, 2003, 10, 1110-1116.	1.5	3
125	Bone Tissue Engineering: Treatment of Cranial Bone Defects in Rabbits Using Self-Reinforced Poly-L,D-lactide 96/4 Sheets. Journal of Craniofacial Surgery, 2002, 13, 607-613.	0.7	12
126	Developments in Craniomaxillofacial Surgery: Use of Self-Reinforced Bioabsorbable Osteofixation Devices. Plastic and Reconstructive Surgery, 2001, 108, 167-180.	1.4	111

#	Article	IF	CITATIONS
127	Bioabsorbable scaffolds for guided bone regeneration and generation. Biomaterials, 2000, 21, 2495-2505.	11.4	198
128	Strength retention of self-reinforced drawn poly-L/DL-lactide 70/30 (SR-PLA70) rods and fixation properties of distal femoral osteotomies with these rods. An experimental study on rats. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 1411-1428.	3.5	22
129	Liquidus Temperatures of Bioactive Glasses. Advanced Materials Research, 0, 39-40, 287-292.	0.3	12
130	Tailoring of the physical and mechanical properties of biocompatible graphene oxide/gelatin composite nanolaminates <i>via</i> altering the crystal structure and morphology. Materials Advances, 0, , .	5.4	2