Minna Kellomäki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9250442/publications.pdf

Version: 2024-02-01

130 papers 4,303 citations

34 h-index 59 g-index

131 all docs

131 docs citations

131 times ranked

6050 citing authors

#	Article	IF	CITATIONS
1	A review of rapid prototyping techniques for tissue engineering purposes. Annals of Medicine, 2008, 40, 268-280.	3.8	659
2	Bioabsorbable scaffolds for guided bone regeneration and generation. Biomaterials, 2000, 21, 2495-2505.	11.4	198
3	Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation. Biomaterials, 2010, 31, 4731-4739.	11.4	122
4	Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering. Journal of Materials Science: Materials in Medicine, 2014, 25, 1129-1136.	3.6	119
5	Developments in Craniomaxillofacial Surgery: Use of Self-Reinforced Bioabsorbable Osteofixation Devices. Plastic and Reconstructive Surgery, 2001, 108, 167-180.	1.4	111
6	Growth and Osteogenic Differentiation of Adipose Stem Cells on PLA/Bioactive Glass and PLA/ \hat{l}^2 -TCP Scaffolds. Tissue Engineering - Part A, 2009, 15, 1473-1480.	3.1	110
7	Degradation mechanisms of bioresorbable polyesters. Part 1. Effects of random scission, end scission and autocatalysis. Acta Biomaterialia, 2014, 10, 2223-2232.	8.3	109
8	Nanocellulose and chitosan based films as low cost, green piezoelectric materials. Carbohydrate Polymers, 2018, 202, 418-424.	10.2	101
9	Tissue-Engineered Small-Caliber Vascular Graft Based on a Novel Biodegradable Composite Fibrin-Polylactide Scaffold. Tissue Engineering - Part A, 2009, 15, 1909-1918.	3.1	98
10	Novel Polypyrrole-Coated Polylactide Scaffolds Enhance Adipose Stem Cell Proliferation and Early Osteogenic Differentiation. Tissue Engineering - Part A, 2013, 19, 882-892.	3.1	85
11	Comparison of Biomaterials and Extracellular Matrices as a Culture Platform for Multiple, Independently Derived Human Embryonic Stem Cell Lines. Tissue Engineering - Part A, 2009, 15, 1775-1785.	3.1	80
12	Bioactive glass ions as strong enhancers of osteogenic differentiation in human adipose stem cells. Acta Biomaterialia, 2015, 21, 190-203.	8.3	76
13	In vitroandin vivobehavior of self-reinforced bioabsorbable polymer and self-reinforced bioabsorbable polymer/bioactive glass composites. Journal of Biomedical Materials Research - Part A, 2004, 69A, 699-708.	4.0	73
14	Mechanically Biomimetic Gelatin–Gellan Gum Hydrogels for 3D Culture of Beating Human Cardiomyocytes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 20589-20602.	8.0	70
15	Bioamine-crosslinked gellan gum hydrogel for neural tissue engineering. Biomedical Materials (Bristol), 2017, 12, 025014.	3.3	61
16	Characterization of the microstructure of hydrazone crosslinked polysaccharide-based hydrogels through rheological and diffusion studies. Materials Science and Engineering C, 2019, 94, 1056-1066.	7.3	61
17	Drug-Eluting Biodegradable Poly-D/L-Lactic Acid Vascular Stents: An Experimental Pilot Study. Journal of Endovascular Therapy, 2005, 12, 371-379.	1.5	59
18	Fat Tissue. Journal of Craniofacial Surgery, 2007, 18, 325-335.	0.7	49

#	Article	IF	CITATIONS
19	Autologous adipose stem cells and polylactide discs in the replacement of the rabbit temporomandibular joint disc. Journal of the Royal Society Interface, 2013, 10, 20130287.	3.4	49
20	Breath figures in tissue engineering and drug delivery: State-of-the-art and future perspectives. Acta Biomaterialia, 2018, 66, 44-66.	8.3	49
21	Degradation mechanisms of bioresorbable polyesters. Part 2. Effects of initial molecular weight and residual monomer. Acta Biomaterialia, 2014, 10, 2233-2240.	8.3	48
22	Hydrazone crosslinked hyaluronan-based hydrogels for therapeutic delivery of adipose stem cells to treat corneal defects. Materials Science and Engineering C, 2018, 85, 68-78.	7.3	48
23	Human Adipose Stem Cells Differentiated on Braided Polylactide Scaffolds Is a Potential Approach for Tendon Tissue Engineering. Tissue Engineering - Part A, 2016, 22, 513-523.	3.1	43
24	Composite Hydrogels Using Bioinspired Approach with in Situ Fast Gelation and Self-Healing Ability as Future Injectable Biomaterial. ACS Applied Materials & Interfaces, 2018, 10, 11950-11960.	8.0	43
25	Use of adipose stem cells and polylactide discs for tissue engineering of the temporomandibular joint disc. Journal of the Royal Society Interface, 2010, 7, 177-188.	3.4	41
26	Poly-L-D-Lactic Acid Scaffold in the Repair of Porcine Knee Cartilage Lesions. Tissue Engineering, 2007, 13, 1347-1355.	4.6	39
27	1852: A Pilot Study of a New Biodegradable Braided PLGA Urethral Stent in the Treatment of Acute Urinary Retention. Journal of Urology, 2007, 177, 615-615.	0.4	38
28	Bioactive glass ions induce efficient osteogenic differentiation of human adipose stem cells encapsulated in gellan gum and collagen type I hydrogels. Materials Science and Engineering C, 2019, 99, 905-918.	7.3	38
29	Effect of FGF and Polylactide Scaffolds on Calvarial Bone Healing With Growth Factor on Biodegradable Polymer Scaffolds. Journal of Craniofacial Surgery, 2006, 17, 935-942.	0.7	37
30	Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerization. Materials Science and Engineering C, 2014, 43, 280-289.	7.3	37
31	Wireless and inductively powered implant for measuring electrocardiogram. Medical and Biological Engineering and Computing, 2007, 45, 1163-1174.	2.8	36
32	Direct laser writing and geometrical analysis of scaffolds with designed pore architecture for three-dimensional cell culturing. Journal of Micromechanics and Microengineering, 2012, 22, 115016.	2.6	36
33	Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering. Annals of Biomedical Engineering, 2017, 45, 1015-1026.	2.5	36
34	Biodegradable Self-Expanding Poly-L/D-Lactic Acid Vascular Stent: A Pilot Study in Canine and Porcine Iliac Arteries. Journal of Endovascular Therapy, 2004, 11, 712-718.	1.5	35
35	Characterizing and optimizing poly- <scp>I</scp> -lactide-co-ε-caprolactone membranes for urothelial tissue engineering. Journal of the Royal Society Interface, 2012, 9, 3444-3454.	3.4	35
36	Direct Laser Writing of Tubular Microtowers for 3D Culture of Human Pluripotent Stem Cell-Derived Neuronal Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 25717-25730.	8.0	35

#	Article	IF	Citations
37	Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part II: In vitro degradation. Acta Biomaterialia, 2008, 4, 156-164.	8.3	34
38	Comparison of a poly- <scp> </scp> -lactide-co- <i>É></i> -caprolactone and human amniotic membrane for urothelium tissue engineering applications. Journal of the Royal Society Interface, 2011, 8, 671-677.	3.4	33
39	Langmuir-Schaefer film deposition onto honeycomb porous films for retinal tissue engineering. Acta Biomaterialia, 2017, 54, 138-149.	8.3	32
40	Long-term bone tissue reaction to polyethylene oxide/polybutylene terephthalate copolymer (Polyactive $\hat{A}^{@}$) in metacarpophalangeal joint reconstruction. Biomaterials, 2008, 29, 2509-2515.	11.4	31
41	The use of biodegradable scaffold as an alternative to silicone implant arthroplasty for small joint reconstruction: An experimental study in minipigs. Biomaterials, 2008, 29, 683-691.	11.4	31
42	Comparison of Chondroitin Sulfate and Hyaluronic Acid Doped Conductive Polypyrrole Films for Adipose Stem Cells. Annals of Biomedical Engineering, 2014, 42, 1889-1900.	2.5	30
43	Porous polylactide \hat{I}^2 -tricalcium phosphate composite scaffolds for tissue engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 366-373.	2.7	29
44	A novel radiopaque biodegradable stent for pancreatobiliary applications – The first human phase I trial in the pancreas. Pancreatology, 2012, 12, 264-271.	1.1	27
45	Chemical and topographical patterning of hydrogels for neural cell guidance <i>in vitro</i> . Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 253-270.	2.7	27
46	Improved dimensional stability with bioactive glass fibre skeleton in poly(lactide-co-glycolide) porous scaffolds for tissue engineering. Materials Science and Engineering C, 2015, 56, 457-466.	7.3	27
47	Carbon nanotube micropillars trigger guided growth of complex human neural stem cells networks. Nano Research, 2019, 12, 2894-2899.	10.4	27
48	Fibre reinforced bioresorbable composites for spinal surgery. Acta Biomaterialia, 2006, 2, 575-587.	8.3	26
49	A novel technique for hepaticojejunostomy for nondilated bile ducts: a purse-string anastomosis with an intra-anastomotic biodegradable biliary stent. American Journal of Surgery, 2010, 200, 124-130.	1.8	26
50	The production of injectable hydrazone crosslinked gellan gum-hyaluronan-hydrogels with tunable mechanical and physical properties. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 383-391.	3.1	26
51	Biodegradable braided poly(lacticâ€coâ€glycolic acid) urethral stent combined with dutasteride in the treatment of acute urinary retention due to benign prostatic enlargement: a pilot study. BJU International, 2009, 103, 626-629.	2.5	25
52	Soft hydrazone crosslinked hyaluronan- and alginate-based hydrogels as 3D supportive matrices for human pluripotent stem cell-derived neuronal cells. Reactive and Functional Polymers, 2018, 124, 29-39.	4.1	25
53	The Strength of the 6-Strand Modified Kessler Repair Performed With Triple-Stranded or Triple-Stranded Bound Suture in a Porcine Extensor Tendon Model: An Ex Vivo Study. Journal of Hand Surgery, 2007, 32, 510-517.	1.6	23
54	A Novel Biodegradable Biliary Stent in the Normal Duct Hepaticojejunal Anastomosis: an 18-month Follow-up in a Large Animal Model. Journal of Gastrointestinal Surgery, 2007, 11, 750-757.	1.7	23

#	Article	IF	CITATIONS
55	Ormocomp-Modified Glass Increases Collagen Binding and Promotes the Adherence and Maturation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells. Langmuir, 2014, 30, 14555-14565.	3.5	23
56	Two-step crosslinking to enhance the printability of methacrylated gellan gum biomaterial ink for extrusion-based 3D bioprinting. Bioprinting, 2022, 25, e00185.	5.8	23
57	Strength retention of self-reinforced drawn poly-L/DL-lactide 70/30 (SR-PLA70) rods and fixation properties of distal femoral osteotomies with these rods. An experimental study on rats. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 1411-1428.	3.5	22
58	Bioactive composite for keratoprosthesis skirt. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1700-1708.	3.1	22
59	A simple and high production rate manufacturing method for submicron polymer fibres. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, e239-e243.	2.7	22
60	Fabrication and Characterization of a Wireless Bioresorbable Pressure Sensor. Advanced Materials Technologies, 2019, 4, 1900428.	5.8	22
61	Biocompatibility of New Drug-eluting Biodegradable Urethral Stent Materials. Urology, 2010, 75, 229-234.	1.0	21
62	Solubility and phase separation of poly(<scp>L,D</scp> â€lactide) copolymers. Journal of Applied Polymer Science, 2008, 110, 2399-2404.	2.6	20
63	Tyrosine-derived polycarbonate membrane in treating mandibular bone defects. An experimental study. Journal of the Royal Society Interface, 2006, 3, 629-635.	3.4	19
64	Twoâ€photon microfabrication of poly(ethylene glycol) diacrylate and a novel biodegradable photopolymerâ€"comparison of processability for biomedical applications. Polymers for Advanced Technologies, 2012, 23, 992-1001.	3.2	19
65	Knitted 3D Scaffolds of Polybutylene Succinate Support Human Mesenchymal Stem Cell Growth and Osteogenesis. Stem Cells International, 2018, 2018, 1-11.	2.5	19
66	A New Biodegradable Braided Self-Expandable PLGA Prostatic Stent: An Experimental Study in the Rabbit. Journal of Endourology, 2008, 22, 1065-1070.	2.1	18
67	Knitted polylactide 96/4 L/D structures and scaffolds for tissue engineering: Shelf life, in vitro and in vivo studies. Biomatter, 2011, 1, 102-113.	2.6	18
68	Co-culture of human induced pluripotent stem cell-derived retinal pigment epithelial cells and endothelial cells on double collagen-coated honeycomb films. Acta Biomaterialia, 2020, 101, 327-343.	8.3	18
69	Tissue biocompatibility of new biodegradable drug-eluting stent materials. Journal of Materials Science: Materials in Medicine, 2007, 18, 1543-1547.	3.6	17
70	Urethral <i>in situ</i> biocompatibility of new drugâ€eluting biodegradable stents: an experimental study in the rabbit. BJU International, 2009, 103, 1132-1135.	2.5	17
71	Effects of chitosan and bioactive glass modifications of knitted and rolled polylactide-based 96/4 L/D scaffolds on chondrogenic differentiation of adipose stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 55-65.	2.7	17
72	In Vitro Degradation of Borosilicate Bioactive Glass and Poly(l-lactide-co-Îμ-caprolactone) Composite Scaffolds. Materials, 2017, 10, 1274.	2.9	17

#	Article	IF	CITATIONS
73	Polyethylene Terephthalate Textiles Enhance the Structural Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Materials, 2019, 12, 1805.	2.9	17
74	Materials and Orthopedic Applications for Bioresorbable Inductively Coupled Resonance Sensors. ACS Applied Materials & Diverges, 2020, 12, 31148-31161.	8.0	17
75	Tissue reactions of subcutaneously implanted mixture of epsilon-caprolactone-lactide copolymer and tricalcium phosphate. An electron microscopic evaluation in sheep. Journal of Materials Science: Materials in Medicine, 2003, 14, 913-918.	3.6	16
76	Processâ€induced monomer on a medicalâ€grade polymer and its effect on shortâ€term hydrolytic degradation. Journal of Applied Polymer Science, 2011, 119, 2996-3003.	2.6	16
77	Preclinical Evaluation of New Indomethacin-Eluting Biodegradable Urethral Stent. Journal of Endourology, 2012, 26, 387-392.	2.1	16
78	An in vitro study of composites of poly(L-lactide-co- $\hat{l}\mu$ -caprolactone), \hat{l}^2 -tricalcium phosphate and ciprofloxacin intended for local treatment of osteomyelitis. Biomatter, 2013, 3, e23162.	2.6	16
79	Screening of Hydrogels for Human Pluripotent Stem Cell–Derived Neural Cells: Hyaluronanâ€Polyvinyl Alcoholâ€Collagenâ€Based Interpenetrating Polymer Network Provides an Improved Hydrogel Scaffold. Macromolecular Bioscience, 2019, 19, e1900096.	4.1	16
80	Studies of P(L/D)LA 96/4 non-woven scaffolds and fibres; properties, wettability and cell spreading before and after intrusive treatment methods. Journal of Materials Science: Materials in Medicine, 2007, 18, 1253-1261.	3.6	15
81	In Vitro Degradation of Osteoconductive Poly-L/DL-Lactide / \hat{I}^2 -TCP Composites. Key Engineering Materials, 2003, 254-256, 509-512.	0.4	14
82	In vivo testing of a biodegradable woven fabric made of bioactive glass fibers and PLGA ₈₀ —A pilot study in the rabbit. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 93B, 573-580.	3.4	14
83	Chemical modification strategies for viscosity-dependent processing of gellan gum. Carbohydrate Polymers, 2021, 269, 118335.	10.2	14
84	Bioabsorbable poly-I/d-lactide (PLDLA) 96/4 triple-stranded bound suture in the modified Kessler repair: an ex vivo static and cyclic tensile testing study in a porcine extensor tendon model. Journal of Materials Science: Materials in Medicine, 2009, 20, 1963-1969.	3.6	13
85	Peptide-functionalized chitosan–DNA nanoparticles for cellular targeting. Carbohydrate Polymers, 2012, 89, 948-954.	10.2	13
86	Hydrolytic degradation of composites of poly(L-lactide-co-É)-caprolactone) 70/30 and \hat{l}^2 -tricalcium phosphate. Journal of Biomaterials Applications, 2013, 28, 529-543.	2.4	13
87	Dexamethasoneâ€eluting Vascular Stents. Basic and Clinical Pharmacology and Toxicology, 2013, 112, 296-301.	2.5	13
88	Evaluation of scaffold microstructure and comparison of cell seeding methods using micro-computed tomography-based tools. Journal of the Royal Society Interface, 2020, 17, 20200102.	3.4	13
89	Bone Tissue Engineering: Treatment of Cranial Bone Defects in Rabbits Using Self-Reinforced Poly-L,D-lactide 96/4 Sheets. Journal of Craniofacial Surgery, 2002, 13, 607-613.	0.7	12
90	Liquidus Temperatures of Bioactive Glasses. Advanced Materials Research, 0, 39-40, 287-292.	0.3	12

#	Article	IF	Citations
91	Processing and sustained in vitro release of rifampicin containing composites to enhance the treatment of osteomyelitis. Biomatter, 2012, 2, 213-225.	2.6	12
92	InÂvivo degradation of poly(DTE carbonate) membranes. Analysis of the tissue reactions and mechanical properties. Journal of Materials Science: Materials in Medicine, 2008, 19, 53-58.	3.6	11
93	Bioactive glass ions for <i>in vitro</i> osteogenesis and microvascularization in gellan gumâ€collagen hydrogels. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1332-1342.	3.4	11
94	Photocross-linkable Methacrylated Polypeptides and Polysaccharides for Casting, Injecting, and 3D Fabrication. Biomacromolecules, 2021, 22, 481-493.	5.4	11
95	Optical projection tomography as a quantitative tool for analysis of cell morphology and density in 3D hydrogels. Scientific Reports, 2021, 11, 6538.	3.3	11
96	Fiber-reinforced bioactive and bioabsorbable hybrid composites. Biomedical Materials (Bristol), 2008, 3, 034106.	3.3	10
97	Design of modular gellan gum hydrogel functionalized with avidin and biotinylated adhesive ligands for cell culture applications. PLoS ONE, 2019, 14, e0221931.	2.5	10
98	Non-destructive and wireless monitoring of biodegradable polymers. Sensors and Actuators B: Chemical, 2017, 251, 1018-1025.	7.8	9
99	Effect of Melt-Derived Bioactive Glass Particles on the Properties of Chitosan Scaffolds. Journal of Functional Biomaterials, 2019, 10, 38.	4.4	9
100	PERSISTENCE OF INDENTATION WITH BIOABSORBABLE POLY-I/d-LACTIDE VERSUS SILICONE SPONGE SCLERAL BUCKLING IMPLANTS. Retina, 2005, 25, 581-586.	1.7	8
101	Composite coating structure in an implantable electronic device. Soldering and Surface Mount Technology, 2009, 21, 24-29.	1.5	8
102	Strength retention behavior of oriented PLLA, 96L/4D PLA, and 80L/20D,L PLA. Biomatter, 2013, 3, .	2.6	8
103	Holding Power of Bioabsorbable Self-Reinforced Poly-L/DL-Lactide 70/30 Tacks and Miniscrews in Human Cadaver Bone. Journal of Craniofacial Surgery, 2003, 14, 171-175.	0.7	7
104	Biocompatibility of Different Biopolymers After Being Implanted Into the Rat Cochlea. Otology and Neurotology, 2008, 29, 714-719.	1.3	7
105	Influence of medical sterilization on ACA flip chip joints using conformal coating. Microelectronics Reliability, 2009, 49, 92-98.	1.7	7
106	Impact of Glass Composition on Hydrolytic Degradation of Polylactide/Bioactive Glass Composites. Materials, 2021, 14, 667.	2.9	7
107	Muraglitazar-Eluting Bioabsorbable Vascular Stent Inhibits Neointimal Hyperplasia in Porcine Iliac Arteries. Journal of Vascular and Interventional Radiology, 2015, 26, 124-130.	0.5	6
108	A tube-source X-ray microtomography approach for quantitative 3D microscopy of optically challenging cell-cultured samples. Communications Biology, 2020, 3, 548.	4.4	6

#	Article	IF	CITATIONS
109	Effect of process parameters on properties of wetâ€spun poly(<scp>L,D</scp> â€lactide) copolymer multifilament fibers. Journal of Applied Polymer Science, 2009, 113, 2683-2692.	2.6	5
110	The Effect of pH on the Degradation of Biodegradable Poly(L-Lactide-Co-Glycolide) 80/20 Urethral Stent Material In Vitro. Journal of Endourology, 2012, 26, 701-705.	2.1	5
111	Demonstrating the mechanism and efficacy of waterâ€induced shape memory and the influence of water on the thermal properties of oriented poly(d,lâ€iactide). Journal of Applied Polymer Science, 2013, 130, 4209-4218.	2.6	5
112	Bioresorbable Conductive Wire with Minimal Metal Content. ACS Biomaterials Science and Engineering, 2019, 5, 1134-1140.	5.2	5
113	Effects of conformal coating on anisotropically conductive adhesive joints; a medical perspective. Soldering and Surface Mount Technology, 2009, 21, 4-11.	1.5	4
114	Effect of hot drawing on properties of wetâ€spun poly(<scp>L,D</scp> â€lactide) copolymer multifilament fibers. Journal of Applied Polymer Science, 2010, 115, 608-615.	2.6	4
115	Effect of proteinâ€loading on properties of wetâ€spun poly(<scp>L,D</scp> â€lactide) multifilament fibers. Journal of Applied Polymer Science, 2010, 116, 2174-2180.	2.6	4
116	Biodegradable encapsulation for inductively measured resonance circuit., 2012,,.		4
117	Collagen-immobilized polyimide membranes for retinal pigment epithelial cell adherence and proliferation. Cogent Chemistry, 2017, 3, 1292593.	2.5	4
118	Injectable and selfâ€healing biobased composite hydrogels as future anticancer therapeutic biomaterials. Nano Select, 2022, 3, 1213-1222.	3.7	4
119	Impedance spectra of polypyrrole coated platinum electrodes. , 2013, 2013, 539-42.		3
120	An Inductively Coupled Biodegradable Capacitive Pressure Sensor. Proceedings (mdpi), 2018, 2, .	0.2	3
121	Requirements for Quantitative Analysis of Intimal Reaction in Arteries Treated With Intraluminal Stents. Journal of Endovascular Therapy, 2003, 10, 1110-1116.	1.5	3
122	Flexor tendon healing within the tendon sheath using bioabsorbable poly-l/d-lactide 96/4 suture. A histological in vivo study with rabbits. Journal of Materials Science: Materials in Medicine, 2014, 25, 1319-1325.	3.6	2
123	Tailoring of the physical and mechanical properties of biocompatible graphene oxide/gelatin composite nanolaminates <i>via</i> altering the crystal structure and morphology. Materials Advances, 0, , .	5.4	2
124	Reduced graphene oxide integrated poly(ionic liquid) functionalized nano-fibrillated cellulose composite paper with improved toughness, ductility and hydrophobicity. Materials Advances, 2021, 2, 948-952.	5.4	2
125	Comprehensive characterisation of the compressive behaviour of hydrogels using a new modelling procedure and redefining compression testing. Materials Today Communications, 2021, 28, 102518.	1.9	2
126	Bioabsorbable and Bioactive Composite Structures from SiO ₂ Glassfibres and Polylactides. Key Engineering Materials, 2004, 254-256, 549-552.	0.4	1

#	Article	IF	CITATIONS
127	Three Composites of Bioactive Glass and PLA-Copolymers: Mass Loss and Water Absorption in Vitro. Key Engineering Materials, 2007, 330-332, 431-434.	0.4	1
128	Optical projection tomography can be used to investigate spatial distribution of chondrocytes in three-dimensional biomaterial scaffolds for cartilage tissue engineering. Bio-Medical Materials and Engineering, 2014, 24, 1549-1553.	0.6	1
129	Using the Taguchi Method to Obtain More Finesse to the Biodegradable Fibers. Methods in Molecular Biology, 2012, 868, 143-154.	0.9	1
130	Simulation of the Readout Methods for Inductively Coupled High-Frequency Resonance Sensors. Proceedings (mdpi), 2018, 2, 923.	0.2	0