Shirley K Knauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9250397/publications.pdf

Version: 2024-02-01

				87888	5	3230
130		7,655		38		85
papers		citations		h-index		g-index
144		144		144		11206
all docs		docs citations		times ranked		citing authors
	papers 144	papers	papers citations 144 144	130 7,655 papers citations 144 144	papers citations h-index 144 144 144	130 7,655 38 papers citations h-index 144 144 144

#	Article	IF	CITATIONS
1	Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nature Nanotechnology, 2013, 8, 772-781.	31.5	1,817
2	Nanoparticle Size Is a Critical Physicochemical Determinant of the Human Blood Plasma Corona: A Comprehensive Quantitative Proteomic Analysis. ACS Nano, 2011, 5, 7155-7167.	14.6	749
3	The nanoparticle biomolecule corona: lessons learned – challenge accepted?. Chemical Society Reviews, 2015, 44, 6094-6121.	38.1	539
4	Impact of the Nanoparticle–Protein Corona on Colloidal Stability and Protein Structure. Langmuir, 2012, 28, 9673-9679.	3 . 5	291
5	A phosphorylation-acetylation switch regulates STAT1 signaling. Genes and Development, 2009, 23, 223-235.	5.9	227
6	Nuclear and Cytoplasmic Survivin: Molecular Mechanism, Prognostic, and Therapeutic Potential. Cancer Research, 2007, 67, 5999-6002.	0.9	209
7	Quantitative profiling of the protein coronas that form around nanoparticles. Nature Protocols, 2014, 9, 2030-2044.	12.0	200
8	Acetylation of Stat1 modulates NF-ÂB activity. Genes and Development, 2006, 20, 473-485.	5.9	189
9	Nuclear export is essential for the tumorâ€promoting activity of survivin. FASEB Journal, 2007, 21, 207-216.	0.5	116
10	The Survivin–Crm1 interaction is essential for chromosomal passenger complex localization and function. EMBO Reports, 2006, 7, 1259-1265.	4. 5	112
11	No king without a crown – impact of the nanomaterial-protein corona on nanobiomedicine. Nanomedicine, 2015, 10, 503-519.	3.3	101
12	Dynamic intracellular survivin in oral squamous cell carcinoma: underlying molecular mechanism and potential as an early prognostic marker. Journal of Pathology, 2007, 211, 532-540.	4.5	100
13	A Tailorâ€Made Specific Anionâ€Binding Motif in the Side Chain Transforms a Tetrapeptide into an Efficient Vector for Gene Delivery. Angewandte Chemie - International Edition, 2015, 54, 2941-2944.	13.8	94
14	miRâ€542â€3p exerts tumor suppressive functions in neuroblastoma by downregulating <scp>S</scp> urvivin. International Journal of Cancer, 2015, 136, 1308-1320.	5.1	78
15	Histone deacetylase inhibitors and hydroxyurea modulate the cell cycle and cooperatively induce apoptosis. Oncogene, 2008, 27, 732-740.	5.9	77
16	The Role of Survivin for Radiation Therapy. Strahlentherapie Und Onkologie, 2007, 183, 593-599.	2.0	74
17	Dynamically regulated sumoylation of HDAC2 controls p53 deacetylation and restricts apoptosis following genotoxic stress. Journal of Molecular Cell Biology, 2012, 4, 284-293.	3.3	70
18	Incorporation of a Nonâ€Natural Arginine Analogue into a Cyclic Peptide Leads to Formation of Positively Charged Nanofibers Capable of Gene Transfection. Angewandte Chemie - International Edition, 2016, 55, 598-601.	13.8	69

#	Article	IF	CITATIONS
19	NO Signaling Confers Cytoprotectivity through the Survivin Network in Ovarian Carcinomas. Cancer Research, 2008, 68, 5159-5166.	0.9	68
20	Inducible NO synthase confers chemoresistance in head and neck cancer by modulating survivin. International Journal of Cancer, 2009, 124, 2033-2041.	5.1	67
21	From Supramolecular Vesicles to Micelles: Controllable Construction of Tumorâ€Targeting Nanocarriers Based on Host–Guest Interaction between a Pillar[5]areneâ€Based Prodrug and a RGDâ€Sulfonate Guest. Small, 2018, 14, e1803952.	10.0	67
22	Small Meets Smaller: Effects of Nanomaterials on Microbial Biology, Pathology, and Ecology. ACS Nano, 2018, 12, 6351-6359.	14.6	66
23	Survivin's Dual Role: An Export's View. Cell Cycle, 2007, 6, 518-521.	2.6	64
24	A combination of a ribonucleotide reductase inhibitor and histone deacetylase inhibitors downregulates EGFR and triggers BIM-dependent apoptosis in head and neck cancer. Oncotarget, 2012, 3, 31-43.	1.8	60
25	Targeted induction of apoptosis by chimeric granzyme B fusion proteins carrying antibody and growth factor domains for cell recognition. Cell Death and Differentiation, 2006, 13, 576-585.	11.2	57
26	The Survivin Isoform Survivin-3B is Cytoprotective and can Function as a Chromosomal Passenger Complex Protein. Cell Cycle, 2007, 6, 1501-1508.	2.6	54
27	Aromatic Thioethers as Novel Luminophores with Aggregationâ€Induced Fluorescence and Phosphorescence. Chemistry - A European Journal, 2017, 23, 13660-13668.	3.3	50
28	Phosphorylation of nm23-H1 by CKI induces its complex formation with h-prune and promotes cell motility. Oncogene, 2008, 27, 1853-1864.	5.9	48
29	Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics. Biomaterials, 2019, 192, 551-559.	11.4	48
30	Histone deacetylase inhibitors block IFN \hat{I}^3 -induced STAT1 phosphorylation. Cellular Signalling, 2012, 24, 1453-1460.	3.6	47
31	Cell-based Analysis of Structure-Function Activity of Threonine Aspartase 1. Journal of Biological Chemistry, 2011, 286, 3007-3017.	3.4	45
32	Nanoparticle binding attenuates the pathobiology of gastric cancer-associated <i>Helicobacter pylori</i> . Nanoscale, 2018, 10, 1453-1463.	5.6	45
33	SIAH proteins: critical roles in leukemogenesis. Leukemia, 2013, 27, 792-802.	7.2	44
34	Nanomaterial–microbe cross-talk: physicochemical principles and (patho)biological consequences. Chemical Society Reviews, 2018, 47, 5312-5337.	38.1	44
35	Translocation Biosensors to Study Signal-Specific Nucleo-Cytoplasmic Transport, Protease Activity and Protein-Protein Interactions. Traffic, 2005, 6, 594-606.	2.7	42
36	Utilizing Combinatorial Chemistry and Rational Design: Peptidic Tweezers with Nanomolar Affinity to DNA Can Be Transformed into Efficient Vectors for Gene Delivery by Addition of a Lipophilic Tail. Angewandte Chemie - International Edition, 2013, 52, 14016-14020.	13.8	42

#	Article	IF	CITATIONS
37	A Tailorâ€Made Specific Anionâ€Binding Motif in the Side Chain Transforms a Tetrapeptide into an Efficient Vector for Gene Delivery. Angewandte Chemie, 2015, 127, 2984-2987.	2.0	40
38	Sumoylation of HDAC2 promotes NF-κB-dependent gene expression. Oncotarget, 2015, 6, 7123-7135.	1.8	40
39	Morphologyâ€Dependent Cell Imaging by Using a Selfâ€Assembled Diacetylene Peptide Amphiphile. Angewandte Chemie - International Edition, 2017, 56, 14526-14530.	13.8	40
40	Non-viral transfection vectors: are hybrid materials the way forward? MedChemComm, 2019, 10, 1692-1718.	3.4	40
41	Calcium phosphate increases the encapsulation efficiency of hydrophilic drugs (proteins, nucleic) Tj ETQq1 1 0.78 delivery. Journal of Materials Chemistry B, 2014, 2, 7250-7259.	4314 rgBT 5.8	/Overlock 39
42	Dynamic survivin in head and neck cancer: Molecular mechanism and therapeutic potential. International Journal of Cancer, 2007, 121, 1169-1174.	5.1	38
43	Nanosized food additives impact beneficial and pathogenic bacteria in the human gut: a simulated gastrointestinal study. Npj Science of Food, 2018, 2, 22.	5.5	37
44	The survivin isoform survivin-3B is cytoprotective and can function as a chromosomal passenger complex protein. Cell Cycle, 2007, 6, 1502-9.	2.6	37
45	Development of an Autofluorescent Translocation Biosensor System To Investigate Proteinâ 'Protein Interactions in Living Cells. Analytical Chemistry, 2005, 77, 4815-4820.	6.5	36
46	Nucleocytoplasmic Shuttling and the Biological Activity of Mouse Survivin are Regulated by an Active Nuclear Export Signal. Traffic, 2006, 7, 1461-1472.	2.7	36
47	Nuclear Export Is Evolutionarily Conserved in CVC Paired-Like Homeobox Proteins and Influences Protein Stability, Transcriptional Activation, and Extracellular Secretion. Molecular and Cellular Biology, 2005, 25, 2573-2582.	2.3	35
48	MTOR inhibitor-based combination therapies for pancreatic cancer. British Journal of Cancer, 2018, 118, 366-377.	6.4	35
49	Similar Regulation of Human Inducible Nitric-oxide Synthase Expression by Different Isoforms of the RNA-binding Protein AUF1. Journal of Biological Chemistry, 2009, 284, 2755-2766.	3.4	33
50	Translocation Biosensors – Cellular System Integrators to Dissect CRM1-Dependent Nuclear Export by Chemicogenomics. Sensors, 2009, 9, 5423-5445.	3.8	33
51	An otoprotective role for the apoptosis inhibitor protein survivin. Cell Death and Disease, 2010, 1, e51-e51.	6.3	33
52	The Importinâ€Alpha/Nucleophosmin Switch Controls Taspase1 Protease Function. Traffic, 2011, 12, 703-714.	2.7	32
53	Efficient gene delivery into cells by a surprisingly small three-armed peptide ligand. Chemical Science, 2012, 3, 996.	7.4	32
54	The differentiation antigen NY-BR-1 is a potential target for antibody-based therapies in breast cancer. International Journal of Cancer, 2007, 120, 2635-2642.	5.1	31

#	Article	IF	Citations
55	The heterodimerization domains of MLL—FYRN and FYRC—are potential target structures in t(4;11) leukemia. Leukemia, 2011, 25, 663-670.	7.2	31
56	Human PAPS Synthase Isoforms Are Dynamically Regulated Enzymes with Access to Nucleus and Cytoplasm. PLoS ONE, 2012, 7, e29559.	2.5	31
57	Human DHEA sulfation requires direct interaction between PAPS synthase 2 and DHEA sulfotransferase SULT2A1. Journal of Biological Chemistry, 2018, 293, 9724-9735.	3.4	29
58	A Branched Tripeptide with an Anionâ€Binding Motif as a New Delivery Carrier for Efficient Gene Transfection. ChemBioChem, 2019, 20, 1410-1416.	2.6	28
59	Bioassays to Monitor Taspase1 Function for the Identification of Pharmacogenetic Inhibitors. PLoS ONE, 2011, 6, e18253.	2.5	25
60	An Old Flame Never Dies: Survivin in Cancer and Cellular Senescence. Gerontology, 2016, 62, 173-181.	2.8	25
61	Differential regulation of PML–RARα stability by the ubiquitin ligases SIAH1/SIAH2 and TRIAD1. International Journal of Biochemistry and Cell Biology, 2012, 44, 132-138.	2.8	23
62	The inducible E3 ubiquitin ligases SIAH1 and SIAH2 perform critical roles in breast and prostate cancers. Cytokine and Growth Factor Reviews, 2015, 26, 405-413.	7.2	23
63	Allosteric inhibition of Taspase1′s pathobiological activity by enforced dimerization <i>in vivo</i> . FASEB Journal, 2012, 26, 3421-3429.	0.5	22
64	Formation of Twisted βâ€Sheet Tapes from a Selfâ€Complementary Peptide Based on Novel Pillarareneâ€GCP Host–Guest Interaction with Gene Transfection Properties. Chemistry - A European Journal, 2018, 24, 9754-9759.	3.3	22
65	<p>ls small smarter? Nanomaterial-based detection and elimination of circulating tumor cells: current knowledge and perspectives</p> . International Journal of Nanomedicine, 2019, Volume 14, 4187-4209.	6.7	22
66	Cancerâ€Cellâ€Specific Drug Delivery by a Tumorâ€Homing CPPâ€Gossypol Conjugate Employing a Tracelessly Cleavable Linker. Chemistry - A European Journal, 2020, 26, 3010-3015.	3.3	22
67	Nuclear receptors in head and neck cancer: current knowledge and perspectives. International Journal of Cancer, 2010, 126, 801-809.	5.1	21
68	Taspase1: a 'misunderstood' protease with translational cancer relevance. Oncogene, 2016, 35, 3351-3364.	5.9	20
69	Expression analysis suggests a potential cytoprotective role of Birc5 in the inner ear. Molecular and Cellular Neurosciences, 2010, 45, 297-305.	2.2	19
70	Functional Disruption of the Cancerâ€Relevant Interaction between Survivin and Histone H3 with a Guanidiniocarbonyl Pyrrole Ligand. Angewandte Chemie - International Edition, 2020, 59, 5567-5571.	13.8	19
71	Survivin antagonizes chemotherapy-induced cell death of colorectal cancer cells. Oncotarget, 2018, 9, 27835-27850.	1.8	19
72	On the Influence of Substitution Patterns in Thioetherâ€Based Luminophores with Aggregationâ€Induced Emission Properties. ChemistrySelect, 2018, 3, 985-991.	1.5	18

#	Article	IF	CITATIONS
73	Specific inhibition of the Survivin–CRM1 interaction by peptide-modified molecular tweezers. Nature Communications, 2021, 12, 1505.	12.8	18
74	RHAMM splice variants confer radiosensitivity in human breast cancer cell lines. Oncotarget, 2016, 7, 21428-21440.	1.8	18
75	Bio–Nano Interactions. , 2017, , 1-12.		17
76	Functional Characterization of Novel Mutations Affecting Survivin (BIRC5)-Mediated Therapy Resistance in Head and Neck Cancer Patients. Human Mutation, 2013, 34, 395-404.	2.5	16
77	Expressional analysis of disease-relevant signalling-pathways in primary tumours and metastasis of head and neck cancers. Scientific Reports, 2018, 8, 7326.	3.3	16
78	Chemico-genetic strategies to inhibit the leukemic potential of threonine aspartase-1. Blood Cancer Journal, 2012, 2, e77-e77.	6.2	15
79	Guanidiniocarbonyl pyrrole (GCP) conjugated PAMAM-G2, a highly efficient vector for gene delivery: the importance of DNA condensation. Chemical Communications, 2016, 52, 12446-12449.	4.1	15
80	Efficient Gene Transfection through Inhibition of βâ€Sheet (Amyloid Fiber) Formation of a Short Amphiphilic Peptide by Gold Nanoparticles. Angewandte Chemie - International Edition, 2017, 56, 8083-8088.	13.8	15
81	Nanoparticle decoration impacts airborne fungal pathobiology. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7087-7092.	7.1	15
82	A Supramolecular Stabilizer of the 14â€3â€3ζ/ERα Proteinâ€Protein Interaction with a Synergistic Mode of Action. Angewandte Chemie - International Edition, 2020, 59, 5284-5287.	13.8	15
83	Peptidyl Succinimidyl Peptides as Taspase 1 Inhibitors. ChemBioChem, 2014, 15, 2233-2237.	2.6	14
84	A Systematic Structure–Activity Study of a New Type of Small Peptidic Transfection Vector Reveals the Importance of a Special Oxoâ€Anionâ€Binding Motif for Gene Delivery. ChemBioChem, 2017, 18, 2268-2279.	2.6	14
85	Therapeutic potential of nuclear receptors. Expert Opinion on Therapeutic Patents, 2008, 18, 861-888.	5.0	13
86	Cloning and functional characterization of the guinea pig apoptosis inhibitor protein Survivin. Gene, 2010, 469, 9-17.	2.2	13
87	Survivin expression pattern in the intestine of normoxic and ischemic rats. BMC Gastroenterology, 2017, 17, 76.	2.0	12
88	New Tools to Probe the Protein Surface: Ultrasmall Gold Nanoparticles Carry Amino Acid Binders. Journal of Physical Chemistry B, 2021, 125, 115-127.	2.6	12
89	Membrane tethering of APP c-terminal fragments is a prerequisite for T668 phosphorylation preventing nuclear sphere generation. Cellular Signalling, 2016, 28, 1725-1734.	3.6	11
90	Cleaving for growth: threonine aspartase $1\hat{a}\in$ "a protease relevant for development and disease. FASEB Journal, 2016, 30, 1012-1022.	0.5	11

#	Article	IF	Citations
91	Arginine mimetic appended peptide-based probes for fluorescence turn-on detection of 14-3-3 proteins. Organic and Biomolecular Chemistry, 2019, 17, 4359-4363.	2.8	11
92	Overexpression of the Catalytically Impaired Taspase1T234V or Taspase1D233A Variants Does Not Have a Dominant Negative Effect in T(4;11) Leukemia Cells. PLoS ONE, 2012, 7, e34142.	2.5	11
93	Targeting Taspase1 for Cancer Therapyâ€"Letter. Cancer Research, 2012, 72, 2912-2912.	0.9	9
94	Fly versus man: evolutionary impairment of nucleolar targeting affects the degradome of Drosophila's Taspase1. FASEB Journal, 2015, 29, 1973-1985.	0.5	9
95	Introduction of a tailor made anion receptor into the side chain of small peptides allows fine-tuning the thermodynamic signature of peptide–DNA binding. Organic and Biomolecular Chemistry, 2016, 14, 8800-8803.	2.8	9
96	Morphologyâ€Dependent Cell Imaging by Using a Selfâ€Assembled Diacetylene Peptide Amphiphile. Angewandte Chemie, 2017, 129, 14718-14722.	2.0	9
97	Simultaneous Rayleigh/Mie and Raman/Fluorescence Characterization of Molecularly Functionalized Colloids by Correlative Single-Particle Real-Time Imaging in Suspension. Analytical Chemistry, 2018, 90, 723-728.	6.5	9
98	REMOVED: Breaking resistance to nanoantibiotics by overriding corona-dependent inhibition using a pH-switch. Materials Today, 2019, 26, 19-29.	14.2	9
99	Boosting nanotoxicity to combat multidrug-resistant bacteria in pathophysiological environments. Nanoscale Advances, 2020, 2, 5428-5440.	4.6	9
100	Supramolecular subphthalocyanine complexes–cellular uptake and phototoxicity. Chemical Communications, 2020, 56, 7653-7656.	4.1	9
101	GGDEF domain as spatial on-switch for a phosphodiesterase by interaction with landmark protein HubP. Npj Biofilms and Microbiomes, 2022, 8, 35.	6.4	9
102	TFIIA transcriptional activity is controlled by a â€~cleave-and-run' Exportin-1/Taspase 1-switch. Journal of Molecular Cell Biology, 2018, 10, 33-47.	3.3	8
103	Resistance to Nano-Based Antifungals Is Mediated by Biomolecule Coronas. ACS Applied Materials & Samp; Interfaces, 2019, 11, 104-114.	8.0	8
104	Mechanisms of nanotoxicity – biomolecule coronas protect pathological fungi against nanoparticle-based eradication. Nanotoxicology, 2020, 14, 1157-1174.	3.0	8
105	Siteâ€Specific SERS Assay for Survivin Protein Dimer: From Ensemble Experiments to Correlative Singleâ€Particle Imaging. Small, 2017, 13, 1700802.	10.0	7
106	A dipeptide with enhanced anion binding affinity enables cell uptake and protein delivery. Organic and Biomolecular Chemistry, 2018, 16, 2312-2317.	2.8	7
107	The other side of the corona: nanoparticles inhibit the protease taspase1 in a size-dependent manner. Nanoscale, 2020, 12, 19093-19103.	5.6	7
108	An update on the pathobiological relevance of nuclear receptors for cancers of the head and neck. Histology and Histopathology, 2010, 25, 1093-104.	0.7	7

#	Article	IF	Citations
109	Umbelliferone Decorated Waterâ€soluble Zinc(II) Phthalocyanines – <i>In Vitro</i> Phototoxic Antimicrobial Antiâ€cancer Agents. Chemistry - A European Journal, 2021, 27, 14672-14680.	3.3	6
110	Smart Glycopolymeric Nanoparticles for Multivalent Lectin Binding and Stimuli-Controlled Guest Release. Biomacromolecules, 2020, 21, 2356-2364.	5.4	5
111	Luminescent Amphiphilic Aminoglycoside Probes to Study Transfection. ChemBioChem, 2021, 22, 1563-1567.	2.6	5
112	Amyloid precursor protein elevates fusion of promyelocytic leukemia nuclear bodies in human hippocampal areas with high plaque load. Acta Neuropathologica Communications, 2021, 9, 66.	5.2	5
113	A Bivalent Supramolecular GCP Ligand Enables Blocking of the Taspase 1/Importin \hat{l}_{\pm} Interaction. ChemMedChem, 2021, 17, e202100640.	3.2	5
114	PEGylated sequence-controlled macromolecules using supramolecular binding to target the Taspase 1/Importin $\hat{l}\pm$ interaction. Chemical Communications, 2021, 57, 3091-3094.	4.1	4
115	The Taspase1/Myosin1f-axis regulates filopodia dynamics. IScience, 2022, 25, 104355.	4.1	4
116	Impact of Secretion-Active Osteoblast-Specific Factor 2 in Promoting Progression and Metastasis of Head and Neck Cancer. Cancers, 2022, 14, 2337.	3.7	4
117	Advances towards Cell Specific Gene Transfection – A Small Molecule Approach Allows for Order of Magnitude Selectivity. Chemistry - A European Journal, 0, , .	3.3	4
118	Lipofection with estrone-based luminophores featuring aggregation-induced emission properties. RSC Advances, 2020, 10, 19643-19647.	3.6	3
119	Funktionelle Inhibition der krebsrelevanten Interaktion von Survivin und Histon H3 mit einem Guanidiniumcarbonylpyrrolâ€Liganden. Angewandte Chemie, 2020, 132, 5614-5619.	2.0	3
120	TNF-α-Inhibition Improves the Biocompatibility of Porous Polyethylene Implants In Vivo. Tissue Engineering and Regenerative Medicine, 2021, 18, 297-303.	3.7	3
121	Selective Disruption of Survivin's Proteinâ€Protein Interactions: A Supramolecular Approach Based on Guanidiniocarbonylpyrrole. ChemBioChem, 2022, , e202100618.	2.6	3
122	Prognostic and Therapeutic Potential of Nuclear Receptors in Head and Neck Squamous Cell Carcinomas. Journal of Oncology, 2009, 2009, 1-10.	1.3	2
123	Evolutionary divergence of Threonine Aspartase 1 leads to species-specific substrate recognition. Biological Chemistry, 2015, 396, 367-376.	2.5	2
124	Efficient Gene Transfection through Inhibition of $\hat{I}^2 \hat{a} \in \mathbf{S}$ heet (Amyloid Fiber) Formation of a Short Amphiphilic Peptide by Gold Nanoparticles. Angewandte Chemie, 2017, 129, 8195-8200.	2.0	2
125	Analysis of HDACi-Induced Changes in Chromosomal Passenger Complex Localization. Methods in Molecular Biology, 2017, 1510, 47-59.	0.9	1
126	Translocation Biosensorsâ€"Versatile Tools to Probe Protein Functions in Living Cells. Methods in Molecular Biology, 2018, 1683, 195-210.	0.9	1

#	Article	IF	CITATIONS
127	Advances towards Cellâ€Specific Gene Transfection: A Smallâ€Molecule Approach Allows Orderâ€ofâ€Magnitude Selectivity. Chemistry - A European Journal, 0, , .	3.3	1
128	Protein Dimerization Probed with Site-Specific Attached Single Nanoparticles. Biophysical Journal, 2019, 116, 284a.	0.5	0
129	A Supramolecular Stabilizer of the 14â€3â€3î¶/ERα Proteinâ€Protein Interaction with a Synergistic Mode of Action. Angewandte Chemie, 2020, 132, 5322-5325.	2.0	O
130	Front Cover: Advances towards Cellâ€Specific Gene Transfection: A Smallâ€Molecule Approach Allows Orderâ€ofâ€Magnitude Selectivity (Chem. Eur. J. 43/2022). Chemistry - A European Journal, 2022, 28, .	3.3	0