
Andrea Ventura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9250341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Restoration of p53 function leads to tumour regression in vivo. Nature, 2007, 445, 661-665.	27.8	1,662
2	Targeted Deletion Reveals Essential and Overlapping Functions of the miR-17â^1/492 Family of miRNA Clusters. Cell, 2008, 132, 875-886.	28.9	1,504
3	MicroRNAs and Cancer: Short RNAs Go a Long Way. Cell, 2009, 136, 586-591.	28.9	824
4	Cre-lox-regulated conditional RNA interference from transgenes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10380-10385.	7.1	575
5	In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature, 2014, 516, 423-427.	27.8	538
6	The biological functions of miRNAs: lessons from in vivo studies. Trends in Cell Biology, 2015, 25, 137-147.	7.9	455
7	Genetic dissection of the <i>miR-17â^¼92</i> cluster of microRNAs in Myc-induced B-cell lymphomas. Genes and Development, 2009, 23, 2806-2811.	5.9	425
8	A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene, 2002, 21, 3872-3878.	5.9	410
9	Widespread regulatory activity of vertebrate microRNA* species. Rna, 2011, 17, 312-326.	3.5	293
10	Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas. Cell Systems, 2018, 6, 282-300.e2.	6.2	284
11	Germline deletion of the miR-17â^¼92 cluster causes skeletal and growth defects in humans. Nature Genetics, 2011, 43, 1026-1030.	21.4	275
12	The MicroRNA-17-92 Family of MicroRNA Clusters in Development and Disease. Cancer Journal (Sudbury,) Tj ETQ	q0.0.0 rgE 2.0	BT /Overlock
13	Capture of MicroRNA–Bound mRNAs Identifies the Tumor Suppressor miR-34a as a Regulator of Growth Factor Signaling. PLoS Genetics, 2011, 7, e1002363.	3.5	222
14	GuideScan software for improved single and paired CRISPR guide RNA design. Nature Biotechnology, 2017, 35, 347-349.	17.5	205
15	Intact p53-Dependent Responses in miR-34–Deficient Mice. PLoS Genetics, 2012, 8, e1002797.	3.5	178
16	microRNA-34a regulates neurite outgrowth, spinal morphology, and function. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21099-21104.	7.1	175

17	The p66Shc Longevity Gene Is Silenced through Epigenetic Modifications of an Alternative Promoter. Journal of Biological Chemistry, 2002, 277, 22370-22376.	3.4	148

¹⁸p66SHC Promotes Apoptosis and Antagonizes Mitogenic Signaling in T Cells. Molecular and Cellular
Biology, 2004, 24, 1747-1757.2.3124

ANDREA VENTURA

#	Article	IF	CITATIONS
19	Mammalian RNAi: a practical guide. BioTechniques, 2005, 39, 215-224.	1.8	121
20	Rapid and efficient one-step generation of paired gRNA CRISPR-Cas9 libraries. Nature Communications, 2015, 6, 8083.	12.8	109
21	In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 767-772.	7.1	108
22	Direct Transactivation of the Anti-apoptotic Gene Apolipoprotein J (Clusterin) by B-MYB. Journal of Biological Chemistry, 2000, 275, 21055-21060.	3.4	106
23	An allelic series of miR-17â^¼92–mutant mice uncovers functional specialization and cooperation among members of a microRNA polycistron. Nature Genetics, 2015, 47, 766-775.	21.4	101
24	Altered RNA Splicing by Mutant p53 Activates Oncogenic RAS Signaling in Pancreatic Cancer. Cancer Cell, 2020, 38, 198-211.e8.	16.8	99
25	Characterization of MLH1 and MSH2 alternative splicing and its relevance to molecular testing of colorectal cancer susceptibility. Human Genetics, 1998, 102, 15-20.	3.8	56
26	Effects of lack of microRNA-34 on the neural circuitry underlying the stress response and anxiety. Neuropharmacology, 2016, 107, 305-316.	4.1	56
27	A Cryptic Targeting Signal Induces Isoform-specific Localization of p46Shc to Mitochondria. Journal of Biological Chemistry, 2004, 279, 2299-2306.	3.4	55
28	Somatic chromosomal engineering identifies BCAN-NTRK1 as a potent glioma driver and therapeutic target. Nature Communications, 2017, 8, 15987.	12.8	53
29	Factor V Leiden and G20210A prothrombin mutation and the risk of subclavian vein thrombosis in patients with breast cancer and a central venous catheter. Annals of Oncology, 2004, 15, 590-593.	1.2	52
30	Circulating Plasma Levels of MicroRNA-21 and MicroRNA-221 Are Potential Diagnostic Markers for Primary Intrahepatic Cholangiocarcinoma. PLoS ONE, 2016, 11, e0163699.	2.5	52
31	Involvement of <i>MBD4</i> inactivation in mismatch repair-deficient tumorigenesis. Oncotarget, 2015, 6, 42892-42904.	1.8	43
32	Dual role for miR-34a in the control of early progenitor proliferation and commitment in the mammary gland and in breast cancer. Oncogene, 2019, 38, 360-374.	5.9	39
33	High-Resolution InÂVivo Identification of miRNA Targets by Halo-Enhanced Ago2 Pull-Down. Molecular Cell, 2020, 79, 167-179.e11.	9.7	36
34	TRK xDFG Mutations Trigger a Sensitivity Switch from Type I to II Kinase Inhibitors. Cancer Discovery, 2021, 11, 126-141.	9.4	34
35	Semaphorins: Green Light for Redox Signaling?. Science Signaling, 2002, 2002, pe44-pe44.	3.6	32
36	Characterization of hepatocellular adenoma and carcinoma using microRNA profiling and targeted gene sequencing. PLoS ONE, 2018, 13, e0200776.	2.5	30

ANDREA VENTURA

#	Article	IF	CITATIONS
37	Role of the <i>miR-17â^¼92</i> cluster family in cerebellar and medulloblastoma development. Biology Open, 2014, 3, 597-605.	1.2	29
38	Embryonic stem cell miRNAs and their roles in development and disease. Seminars in Cancer Biology, 2012, 22, 428-436.	9.6	26
39	<i>Rlf–Mycl</i> Gene Fusion Drives Tumorigenesis and Metastasis in a Mouse Model of Small Cell Lung Cancer. Cancer Discovery, 2021, 11, 3214-3229.	9.4	24
40	NORAD: Defender of the Genome. Trends in Genetics, 2016, 32, 390-392.	6.7	23
41	Inducible and reversible inhibition of miRNA-mediated gene repression in vivo. ELife, 2021, 10, .	6.0	23
42	miR than meets the eye: Figure 1 Genes and Development, 2011, 25, 1663-1667.	5.9	16
43	A New Role for miR-182 in DNA Repair. Molecular Cell, 2011, 41, 135-137.	9.7	15
44	Modeling Cancer in the CRISPR Era. Annual Review of Cancer Biology, 2018, 2, 111-131.	4.5	15
45	Expression in T-cells of the proapoptotic protein p66SHC is controlled by promoter demethylation. Biochemical and Biophysical Research Communications, 2006, 349, 322-328.	2.1	14
46	The CRISPR revolution and its impact on cancer research. Swiss Medical Weekly, 2015, 145, w14230.	1.6	13
47	The present and future of genome editing in cancer research. Human Genetics, 2016, 135, 1083-1092.	3.8	13
48	The Fusion Oncogene FUS-CHOP Drives Sarcomagenesis of High-Grade Spindle Cell Sarcomas in Mice. Sarcoma, 2019, 2019, 1-14.	1.3	9
49	Interplay between K-RAS and miRNAs. Trends in Cancer, 2022, 8, 384-396.	7.4	9
50	The origins and consequences of UPF1 variants in pancreatic adenosquamous carcinoma. ELife, 2021, 10,	6.0	8
51	Somatic Engineering of Oncogenic Chromosomal Rearrangements: A Perspective. Cancer Research, 2016, 76, 4918-4923.	0.9	7
52	ALK7 Erects a Suppressive Barrier to Tumor Progression and Metastasis. Developmental Cell, 2019, 49, 304-305.	7.0	4
53	Cancer diagnosis and immunotherapy in the age of CRISPR. Genes Chromosomes and Cancer, 2019, 58, 233-243.	2.8	4
54	MicroRNAs in Mammalian Development. Modecular Medicine and Medicinal, 2010, , 95-123.	0.4	0

#	Article	IF	CITATIONS
55	Control of TFH differentiation by a microRNA cluster. Nature Immunology, 2013, 14, 770-771.	14.5	0