Bruce Jefferson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9250163/publications.pdf Version: 2024-02-01

		13827	16127
261	17,497	67	124
papers	citations	h-index	g-index
272	272	272	14486
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters. Environment International, 2008, 34, 1033-1049.	4.8	962
2	The Characterization of Feces and Urine: A Review of the Literature to Inform Advanced Treatment Technology. Critical Reviews in Environmental Science and Technology, 2015, 45, 1827-1879.	6.6	896
3	Membrane Fouling in Membrane Bioreactors for Wastewater Treatment. Journal of Environmental Engineering, ASCE, 2002, 128, 1018-1029.	0.7	597
4	Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Research, 2008, 42, 3435-3445.	5.3	569
5	A review of floc strength and breakage. Water Research, 2005, 39, 3121-3137.	5.3	565
6	Critical flux determination by the flux-step method in a submerged membrane bioreactor. Journal of Membrane Science, 2003, 227, 81-93.	4.1	447
7	The impact of algal properties and pre-oxidation on solid–liquid separation of algae. Water Research, 2008, 42, 1827-1845.	5.3	425
8	Membrane bioreactor technology for wastewater treatment and reuse. Desalination, 2006, 187, 271-282.	4.0	374
9	Aerobic MBRs for domestic wastewater treatment: a review with cost considerations. Separation and Purification Technology, 2000, 18, 119-130.	3.9	357
10	Breakage, Regrowth, and Fractal Nature of Natural Organic Matter Flocs. Environmental Science & Technology, 2005, 39, 2307-2314.	4.6	331
11	Fate of Zinc Oxide and Silver Nanoparticles in a Pilot Wastewater Treatment Plant and in Processed Biosolids. Environmental Science & Technology, 2014, 48, 104-112.	4.6	326
12	The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae. Water Research, 2010, 44, 3617-3624.	5.3	267
13	Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor. Journal of Membrane Science, 2003, 218, 117-129.	4.1	249
14	Grey water characterisation and its impact on the selection and operation of technologies for urban reuse. Water Science and Technology, 2004, 50, 157-164.	1.2	232
15	Comparison of the disinfection by-product formation potential of treated waters exposed to chlorine and monochloramine. Water Research, 2010, 44, 729-740.	5.3	223
16	Seasonal variations in natural organic matter and its impact on coagulation in water treatment. Science of the Total Environment, 2006, 363, 183-194.	3.9	215
17	Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media. Chemosphere, 2015, 119, 1353-1360.	4.2	195
18	Fouling mechanisms of alginate solutions as model extracellular polymeric substances. Desalination, 2005, 175, 7-20.	4.0	183

#	Article	IF	CITATIONS
19	A study of the microbial quality of grey water and an evaluation of treatment technologies for reuse. Ecological Engineering, 2008, 32, 187-197.	1.6	181
20	Technologies for domestic wastewater recycling. Urban Water, 2000, 1, 285-292.	0.5	180
21	Chlorine disinfection of grey water for reuse: Effect of organics and particles. Water Research, 2008, 42, 483-491.	5.3	169
22	Membrane bioreactors vs conventional biological treatment of landfill leachate: a brief review. Journal of Chemical Technology and Biotechnology, 2004, 79, 1043-1049.	1.6	166
23	Modelling the energy demands of aerobic and anaerobic membrane bioreactors for wastewater treatment. Environmental Technology (United Kingdom), 2011, 32, 921-932.	1.2	166
24	Impact of fractional character on the coagulation of NOM. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 286, 104-111.	2.3	163
25	Sub-critical flux fouling in membrane bioreactors — a review of recent literature. Desalination, 2005, 174, 221-230.	4.0	158
26	Magnetic ion-exchange resin treatment: Impact of water type and resin use. Water Research, 2008, 42, 1977-1988.	5.3	157
27	Successful Removal of Algae through the Control of Zeta Potential. Separation Science and Technology, 2008, 43, 1653-1666.	1.3	155
28	Combination of ferric and MIEX® for the treatment of a humic rich water. Water Research, 2004, 38, 2551-2558.	5.3	152
29	A critical review of trihalomethane and haloacetic acid formation from natural organic matter surrogates. Environmental Technology Reviews, 2012, 1, 93-113.	2.1	152
30	Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment. Environmental Technology Reviews, 2015, 4, 133-148.	2.1	152
31	Impacts of microalgae pre-treatments for improved anaerobic digestion: Thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Research, 2014, 65, 350-361.	5.3	148
32	Disinfection Byproduct Formation and Fractionation Behavior of Natural Organic Matter Surrogates. Environmental Science & Technology, 2009, 43, 5982-5989.	4.6	147
33	Floc structural characteristics using conventional coagulation for a high doc, low alkalinity surface water source. Water Research, 2006, 40, 2727-2737.	5.3	144
34	Comparison of coagulation performance and floc properties using a novel zirconium coagulant against traditional ferric and alum coagulants. Water Research, 2012, 46, 4179-4187.	5.3	144
35	Dissolved methane recovery from anaerobic effluents using hollow fibre membrane contactors. Journal of Membrane Science, 2016, 502, 141-150.	4.1	136
36	Treatment of disinfection byâ€product precursors. Environmental Technology (United Kingdom), 2011, 32, 1-25.	1.2	134

#	Article	IF	CITATIONS
37	The impact of algogenic organic matter on water treatment plant operation and water quality: A review. Critical Reviews in Environmental Science and Technology, 2016, 46, 291-335.	6.6	134
38	Influence of microalgal N and P composition on wastewater nutrient remediation. Water Research, 2016, 91, 371-378.	5.3	132
39	Chemical solutions for greywater recycling. Chemosphere, 2008, 71, 147-155.	4.2	126
40	Rotating biological contactors for wastewater treatment – A review. Chemical Engineering Research and Design, 2015, 94, 285-306.	2.7	116
41	Disinfection by-product formation of natural organic matter surrogates and treatment by coagulation, MIEX® and nanofiltration. Water Research, 2010, 44, 1645-1653.	5.3	109
42	Nutrient addition to enhance biological treatment of greywater. Water Research, 2001, 35, 2702-2710.	5.3	108
43	Agglomeration of struvite crystals. Water Research, 2007, 41, 419-425.	5.3	108
44	Carbonaceous and nitrogenous disinfection by-product formation from algal organic matter. Chemosphere, 2017, 170, 1-9.	4.2	101
45	Measuring Floc Structural Characteristics. Reviews in Environmental Science and Biotechnology, 2005, 4, 1-18.	3.9	96
46	Impact of membrane configuration on fouling in anaerobic membrane bioreactors. Journal of Membrane Science, 2011, 382, 41-49.	4.1	96
47	Recovery of methane from anaerobic process effluent using poly-di-methyl-siloxane membrane contactors. Water Science and Technology, 2012, 65, 604-610.	1.2	92
48	How the Natural Organic Matter to Coagulant Ratio Impacts on Floc Structural Properties. Environmental Science & Technology, 2005, 39, 8919-8924.	4.6	91
49	The impact of background organic matter and alkalinity onÂthe degradation of the pesticide metaldehyde by two advanced oxidation processes: UV/H2O2 and UV/TiO2. Water Research, 2013, 47, 2041-2049.	5.3	90
50	Pesticide removal from drinking water sources by adsorption: a review. Environmental Technology Reviews, 2019, 8, 1-24.	2.1	87
51	Evaluation of a UV-light emitting diodes unit for the removal of micropollutants in water for low energy advanced oxidation processes. Chemosphere, 2013, 92, 745-751.	4.2	86
52	Assessing microbiological water quality in drinking water distribution systems with disinfectant residual using flow cytometry. Water Research, 2014, 65, 224-234.	5.3	85
53	The Impact of Zeta Potential on the Physical Properties of Ferricâ^'NOM Flocs. Environmental Science & Technology, 2006, 40, 3934-3940.	4.6	82
54	Heat transfer characteristics of silver/water nanofluids in a shell and tube heat exchanger. Archives of Civil and Mechanical Engineering, 2014, 14, 489-496.	1.9	81

#	Article	IF	CITATIONS
55	Non-covalent protein–polysaccharide interactions and their influence on membrane fouling. Journal of Membrane Science, 2013, 446, 310-317.	4.1	80
56	The impact of seasonal variations in DOC arising from a moorland peat catchment on coagulation with iron and aluminium salts. Environmental Pollution, 2006, 140, 436-443.	3.7	77
57	Struvite crystallisation and recovery using a stainless steel structure as a seed material. Water Research, 2007, 41, 2449-2456.	5.3	76
58	Surfactants as Bubble Surface Modifiers in the Flotation of Algae: Dissolved Air Flotation That Utilizes a Chemically Modified Bubble Surface. Environmental Science & Technology, 2008, 42, 4883-4888.	4.6	76
59	Examination of the physical properties of Microcystis aeruginosa flocs produced on coagulation with metal salts. Water Research, 2014, 60, 197-209.	5.3	76
60	Evaluating the impact of LED bulb development on the economic viability of ultraviolet technology for disinfection. Environmental Technology (United Kingdom), 2014, 35, 400-406.	1.2	75
61	Turbidity composition and the relationship with microbial attachment and UV inactivation efficacy. Science of the Total Environment, 2018, 624, 638-647.	3.9	74
62	Hydrophobically-associating cationic polymers as micro-bubble surface modifiers in dissolved air flotation for cyanobacteria cell separation. Water Research, 2014, 61, 253-262.	5.3	73
63	Chemical and biological oxidation of NOM surrogates and effect on HAA formation. Water Research, 2009, 43, 2615-2622.	5.3	72
64	Membrane bioreactors and their role in wastewater reuse. Water Science and Technology, 2000, 41, 197-204.	1.2	71
65	A comparison of submerged and sidestream tubular membrane bioreactor configurations. Desalination, 2005, 173, 113-122.	4.0	71
66	Removal and recovery of phosphate from municipal wastewaters using a polymeric anion exchanger bound with hydrated ferric oxide nanoparticles. Water Science and Technology, 2009, 60, 2637-2645.	1.2	71
67	Greywater recycling: treatment options and applications. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2007, 160, 119-131.	0.4	70
68	Membrane bioreactors for use in small wastewater treatment plants: membrane materials and effluent quality. Water Science and Technology, 2000, 41, 205-211.	1.2	69
69	The impact of wastewater characteristics, algal species selection and immobilisation on simultaneous nitrogen and phosphorus removal. Algal Research, 2018, 31, 478-488.	2.4	67
70	Effect of artificial aeration on tertiary nitrification in a full-scale subsurface horizontal flow constructed wetland. Ecological Engineering, 2013, 54, 236-244.	1.6	66
71	Risk perception in participatory planning for water reuse. Desalination, 2006, 187, 149-158.	4.0	64
72	Pilot Scale Comparison of Enhanced Coagulation with Magnetic Resin Plus Coagulation Systems. Environmental Science & Technology, 2008, 42, 1276-1282.	4.6	64

5

#	Article	IF	CITATIONS
73	Performance of different advanced oxidation processes for tertiary wastewater treatment to remove the pesticide acetamiprid. Journal of Chemical Technology and Biotechnology, 2016, 91, 72-81.	1.6	64
74	Advanced biological unit processes for domestic water recycling. Water Science and Technology, 2001, 43, 211-218.	1.2	62
75	The control of bubble size in carbonated beverages. Chemical Engineering Science, 2002, 57, 565-573.	1.9	62
76	Assessment of municipal waste compost as a daily cover material for odour control at landfill sites. Environmental Pollution, 2005, 135, 171-177.	3.7	62
77	Application of high intensity UVC-LED for the removal of acetamiprid with the photo-Fenton process. Chemical Engineering Journal, 2015, 264, 690-696.	6.6	62
78	Impacts of residence time during storage on potential of water saving for grey water recycling system. Water Research, 2010, 44, 267-277.	5.3	61
79	The use of contact angle measurements to estimate the adhesion propensity of calcium carbonate to solid substrates in water. Applied Surface Science, 2009, 255, 4873-4879.	3.1	59
80	Fouling control of a membrane coupled photocatalytic process treating greywater. Water Research, 2009, 43, 3932-3939.	5.3	58
81	The development and application of CFD models for water treatment flocculators. Advances in Engineering Software, 2010, 41, 99-109.	1.8	58
82	Treatment of municipal wastewater reverse osmosis concentrate using UVC-LED/H2O2 with and without coagulation pre-treatment. Chemical Engineering Journal, 2015, 260, 649-656.	6.6	58
83	Evaluation of engineered nanoparticle toxic effect on wastewater microorganisms: Current status and challenges. Ecotoxicology and Environmental Safety, 2013, 95, 1-9.	2.9	56
84	Aged-engineered nanoparticles effect on sludge anaerobic digestion performance and associated microbial communities. Science of the Total Environment, 2017, 609, 232-241.	3.9	56
85	Economic evaluation of ion-exchange processes for nutrient removal and recovery from municipal wastewater. Npj Clean Water, 2020, 3, .	3.1	55
86	Influence of granular activated carbon media properties on natural organic matter and disinfection by-product precursor removal from drinking water. Water Research, 2020, 174, 115613.	5.3	55
87	Assessing floc strength using CFD to improve organics removal. Chemical Engineering Research and Design, 2008, 86, 941-950.	2.7	54
88	The Potential for Using Bubble Modification Chemicals in Dissolved Air Flotation for Algae Removal. Separation Science and Technology, 2009, 44, 1923-1940.	1.3	54
89	Impact on reactor configuration on the performance of anaerobic MBRs: Treatment of settled sewage in temperate climates. Water Research, 2013, 47, 4853-4860.	5.3	54
90	Preparation and evaluation of zeolites for ammonium removal from municipal wastewater through ion exchange process. Scientific Reports, 2020, 10, 12426.	1.6	53

#	Article	lF	CITATIONS
91	The impact of rainstorm events on coagulation and clarifier performance in potable water treatment. Science of the Total Environment, 2004, 321, 219-230.	3.9	52
92	Coagulation of NOM: linking character to treatment. Water Science and Technology, 2006, 53, 67-76.	1.2	52
93	Computational Fluid Dynamics Modelling of Flocculation in Water Treatment: A Review. Engineering Applications of Computational Fluid Mechanics, 2009, 3, 220-241.	1.5	51
94	Sustainable Flux Fouling in a Membrane Bioreactor: Impact of Flux and MLSS. Separation Science and Technology, 2006, 41, 1279-1291.	1.3	50
95	Bacterial diversity is determined by volume in membrane bioreactors. Environmental Microbiology, 2006, 8, 1048-1055.	1.8	50
96	Establishing the suitability of symmetric ultrathin wall polydimethylsiloxane hollow-fibre membrane contactors for enhanced CO2 separation during biogas upgrading. Journal of Membrane Science, 2014, 452, 37-45.	4.1	50
97	Effect of hydrophilic/hydrophobic fractions of natural organic matter on irreversible fouling of membranes. Desalination, 2009, 249, 182-187.	4.0	49
98	The role of algal organic matter in the separation of algae and cyanobacteria using the novel "Posiâ€+ Dissolved air flotation process. Water Research, 2018, 130, 20-30.	5.3	49
99	Comparison of PPCPs removal on a parallel-operated MBR and AS system and evaluation of effluent post-treatment on vertical flow reed beds. Water Science and Technology, 2011, 63, 2411-2417.	1.2	48
100	Comparison of UV/H2O2 and UV/TiO2 for the degradation of metaldehyde: Kinetics and the impact of background organics. Water Research, 2012, 46, 5655-5662.	5.3	48
101	Identification of gas sparging regimes for granular anaerobic membrane bioreactor to enable energy neutral municipal wastewater treatment. Journal of Membrane Science, 2018, 555, 125-133.	4.1	47
102	Low-Cost Membranes for Use in a Submerged MBR. Chemical Engineering Research and Design, 2001, 79, 183-188.	2.7	45
103	Demonstration of ion exchange technology for phosphorus removal and recovery from municipal wastewater. Chemical Engineering Journal, 2021, 420, 129913.	6.6	44
104	Inhibition of three algae species using chemicals released from barley straw. Environmental Technology (United Kingdom), 2010, 31, 455-466.	1.2	42
105	Polymers as bubble surface modifiers in the flotation of algae. Environmental Technology (United) Tj ETQq1 1 ().784314 rg 1.2	gBT/Overlock 42
106	The Role of Polymer in Improving Floc Strength for Filtration. Environmental Science & Technology, 2010, 44, 6443-6449.	4.6	42
107	Toward gas-phase controlled mass transfer in micro-porous membrane contactors for recovery and concentration of dissolved methane in the gas phase. Journal of Membrane Science, 2016, 510, 466-471.	4.1	42
108	The impact of background wastewater constituents on the selectivity and capacity of a hybrid ion exchange resin for phosphorus removal from wastewater. Chemosphere, 2019, 224, 494-501.	4.2	41

#	Article	IF	CITATIONS
109	Biogas upgrading by chemical absorption using ammonia rich absorbents derived from wastewater. Water Research, 2014, 67, 175-186.	5.3	40
110	Removal of disinfection by-product precursors by coagulation and an innovative suspended ion exchange process. Water Research, 2015, 87, 20-28.	5.3	40
111	The duplicity of floc strength. Water Science and Technology, 2004, 50, 63-70.	1.2	39
112	Membrane chemical reactor (MCR) combining photocatalysis and microfiltration for grey water treatment. Water Science and Technology, 2006, 53, 173-180.	1.2	39
113	Low energy ballasted flotation. Water Research, 2009, 43, 3427-3434.	5.3	39
114	Photocatalytic oxidation of natural organic matter surrogates and the impact on trihalomethane formation potential. Chemosphere, 2010, 81, 1509-1516.	4.2	39
115	Methods for understanding organic fouling in MBRs. Water Science and Technology, 2004, 49, 237-244.	1.2	38
116	A review of the impact and potential of intermittent aeration on continuous flow nitrifying activated sludge. Environmental Technology (United Kingdom), 2011, 32, 1685-1697.	1.2	37
117	Experiences of algae in UK waters: a treatment perspective. Water and Environment Journal, 2008, 22, 184-192.	1.0	35
118	Comparing flow cytometry with culture-based methods for microbial monitoring and as a diagnostic tool for assessing drinking water treatment processes. Environment International, 2019, 130, 104893.	4.8	35
119	Natural organic matter – the relationship between character and treatability. Water Science and Technology: Water Supply, 2004, 4, 43-48.	1.0	34
120	Microbubbles and their application to ozonation in water treatment: A critical review exploring their benefit and future application. Critical Reviews in Environmental Science and Technology, 2022, 52, 1561-1603.	6.6	34
121	Identifying the linkage between particle characteristics and understanding coagulation performance. Water Science and Technology: Water Supply, 2006, 6, 31-38.	1.0	33
122	Constructed wetlands for grey water treatment. Ecohydrology and Hydrobiology, 2007, 7, 191-200.	1.0	33
123	Essential oils for the disinfection of grey water. Water Research, 2008, 42, 2260-2268.	5.3	32
124	Gas to liquid mass transfer in rheologically complex fluids. Chemical Engineering Journal, 2015, 273, 656-667.	6.6	32
125	Surface diagnostics for scale analysis. Water Science and Technology, 2004, 49, 183-190.	1.2	31
126	ULTRAVIOLET (UV) DISINFECTION OF GREY WATER: PARTICLE SIZE EFFECTS. Environmental Technology (United Kingdom), 2008, 29, 235-244.	1.2	31

#	Article	IF	CITATIONS
127	Comparison of UV/TiO2 and UV/H2O2 processes in an annular photoreactor for removal of micropollutants: Influence of water parameters on metaldehyde removal, quantum yields and energy consumption. Applied Catalysis B: Environmental, 2013, 138-139, 268-275.	10.8	31
128	The influence of ultrasound frequency and power, on the algal species <i>Microcystis aeruginosa, Aphanizomenon flos-aquae, Scenedesmus subspicatus</i> and <i>Melosira</i> sp Environmental Technology (United Kingdom), 2013, 34, 2477-2490.	1.2	31
129	The impacts of replacing air bubbles with microspheres for the clarification of algae from low cell-density culture. Water Research, 2014, 53, 168-179.	5.3	31
130	Fate ofE. ColiAcross Mechanical Dewatering Processes. Environmental Technology (United Kingdom), 2004, 25, 825-831.	1.2	27
131	Processes for enhanced NOM removal: beyond Fe and Al coagulation. Water Science and Technology: Water Supply, 2008, 8, 709-716.	1.0	27
132	Understanding the potential for selective natural organic matter removal by ion exchange. Water Research, 2018, 146, 256-263.	5.3	27
133	Comparison of fouling between aerobic and anaerobic MBR treating municipal wastewater. H2Open Journal, 2018, 1, 131-159.	0.8	26
134	The combined influence of hydrophobicity, charge and molecular weight on natural organic matter removal by ion exchange and coagulation. Chemosphere, 2020, 238, 124633.	4.2	26
135	Insights into the effect of mixed engineered nanoparticles on activated sludge performance. FEMS Microbiology Ecology, 2015, 91, fiv082.	1.3	25
136	Waterâ€Recycling Technologies in the UK. Water and Environment Journal, 2001, 15, 282-286.	1.0	24
137	Constructed wetlands for urban grey water recycling. International Journal of Environment and Pollution, 2008, 33, 93.	0.2	24
138	Incorporating biodegradation and advanced oxidation processes in the treatment of spent metalworking fluids. Environmental Technology (United Kingdom), 2012, 33, 2741-2750.	1.2	24
139	Ammonia recovery from brines originating from a municipal wastewater ion exchange process and valorization of recovered nitrogen into microbial protein. Chemical Engineering Journal, 2022, 427, 130896.	6.6	24
140	Experiences of algal bloom control using green solutions barley straw and ultrasound, an industry perspective. Water and Environment Journal, 2013, 27, 148-156.	1.0	23
141	Effect of elevated UV dose and alkalinity on metaldehyde removal and THM formation with UV/TiO2 and UV/H2O2. Chemical Engineering Journal, 2016, 288, 359-367.	6.6	23
142	Recovery and reuse of alginate in an immobilized algae reactor. Environmental Technology (United) Tj ETQq0 0 C) rgBT /Ov	erlogk 10 Tf 5
143	Resilience and life cycle assessment of ion exchange process for ammonium removal from municipal wastewater. Science of the Total Environment, 2021, 783, 146834.	3.9	23

Characterising natural organic matter flocs. Water Science and Technology: Water Supply, 2004, 4, 79-87. 1.0 22

#	Article	IF	CITATIONS
145	The Practical Application of Fractal Dimension in Water Treatment Practice–the Impact of Polymer Dosing. Separation Science and Technology, 2008, 43, 1785-1797.	1.3	22
146	Quantifying the loss of methane through secondary gas mass transport (or †̃slip') from a micro-porous membrane contactor applied to biogas upgrading. Water Research, 2013, 47, 3688-3695.	5.3	22
147	Influence of substrate on fouling in anoxic immersed membrane bioreactors. Water Research, 2007, 41, 3859-3867.	5.3	21
148	Controlling shell-side crystal nucleation in a gas–liquid membrane contactor for simultaneous ammonium bicarbonate recovery and biogas upgrading. Journal of Membrane Science, 2015, 473, 146-156.	4.1	21
149	Tertiary nutrient removal from wastewater by immobilised microalgae: impact of wastewater nutrient characteristics and hydraulic retention time (HRT). H2Open Journal, 2018, 1, 12-25.	0.8	21
150	Characterisation of food service establishment wastewater and its implication for treatment. Journal of Environmental Management, 2019, 252, 109657.	3.8	21
151	Dead-end filtration of natural organic matter: experimental evidence of critical conditions. Desalination, 2005, 175, 29-36.	4.0	20
152	Influence of pH on gas phase controlled mass transfer in a membrane contactor for hydrogen sulphide absorption. Journal of Membrane Science, 2013, 427, 276-282.	4.1	20
153	Performance of Four Full-Scale Artificially Aerated Horizontal Flow Constructed Wetlands for Domestic Wastewater Treatment. Water (Switzerland), 2016, 8, 365.	1.2	20
154	Determining how polymer-bubble interactions impact algal separation using the novel "Posi―dissolved air flotation process. Separation and Purification Technology, 2018, 201, 139-147.	3.9	20
155	Consequences of pH change on wastewater depth filtration using a multimedia filter. Water Research, 2018, 128, 111-119.	5.3	20
156	Sustaining membrane permeability during unsteady-state operation of anaerobic membrane bioreactors for municipal wastewater treatment following peak-flow. Journal of Membrane Science, 2018, 564, 289-297.	4.1	20
157	Are microbubbles magic or just small? a direct comparison of hydroxyl radical generation between microbubble and conventional bubble ozonation under typical operational conditions. Chemical Engineering Journal, 2022, 435, 134854.	6.6	20
158	A Comparison of Chemical Methods for the Control of Odours in Wastewater. Chemical Engineering Research and Design, 2002, 80, 93-99.	2.7	19
159	Comparison of grey water treatment performance by a cascading sand filter and a constructed wetland. Water Science and Technology, 2010, 62, 1471-1478.	1.2	18
160	The impact of barley straw conditioning on the inhibition of Scenedesmus using chemostats. Water Research, 2010, 44, 1373-1380.	5.3	17
161	Impact of aeration on macrophyte establishment in sub-surface constructed wetlands used for tertiary treatment of sewage. Ecological Engineering, 2016, 91, 65-73.	1.6	17
162	Comparable membrane permeability can be achieved in granular and flocculent anaerobic membrane bioreactor for sewage treatment through better sludge blanket control. Journal of Water Process Engineering, 2019, 28, 181-189.	2.6	17

#	Article	IF	CITATIONS
163	Hydrolysis and Methanogenesis in UASB-AnMBR Treating Municipal Wastewater Under Psychrophilic Conditions: Importance of Reactor Configuration and Inoculum. Frontiers in Bioengineering and Biotechnology, 2020, 8, 567695.	2.0	17
164	Establishing the mechanisms underpinning solids breakthrough in UASB configured anaerobic membrane bioreactors to mitigate fouling. Water Research, 2020, 176, 115754.	5.3	17
165	Grey water characterisation and its impact on the selection and operation of technologies for urban reuse. Water Science and Technology, 2004, 50, 157-64.	1.2	17
166	The Impact of Intermittent Aeration on the Operation of Airâ€Lift Tubular Membrane Bioreactors under Subâ€Critical Conditions. Separation Science and Technology, 2006, 41, 1293-1302.	1.3	16
167	Treatment Options and Their Effect on NOM—Coagulant Floc Structures. Journal - American Water Works Association, 2008, 100, 64-73.	0.2	16
168	Photocatalytic oxidation, GAC and biotreatment combinations: an alternative to the coagulation of hydrophilic rich waters?. Environmental Technology (United Kingdom), 2010, 31, 1423-1434.	1.2	16
169	Media surface properties and the development of nitrifying biofilms in mixed cultures for wastewater treatment. Chemical Engineering Research and Design, 2013, 91, 321-324.	2.7	16
170	Fluid hydrodynamics in submerged and sidestream membrane bioreactors. Water Science and Technology, 2003, 48, 113-119.	1.2	15
171	Assessing users' experience of shared sanitation facilities: A case study of community ablution blocks in Durban, South Africa. Water S A, 2010, 36, .	0.2	15
172	The impact of contactor scale on a ferric nanoparticle adsorbent process for the removal of phosphorus from municipal wastewater. Chemical Engineering Journal, 2013, 215-216, 209-215.	6.6	15
173	Removal of phosphorus from trickling filter effluent by electrocoagulation. Environmental Technology (United Kingdom), 2014, 35, 3139-3146.	1.2	15
174	From full-scale biofilters to bioreactors: Engineering biological metaldehyde removal. Science of the Total Environment, 2019, 685, 410-418.	3.9	15
175	The impact of polymer selection and dose on the incorporation of ballasting agents onto wastewater aggregates. Water Research, 2020, 170, 115346.	5.3	15
176	Characterisation and energy assessment of fats, oils and greases (FOG) waste at catchment level. Waste Management, 2020, 103, 399-406.	3.7	15
177	Application of zeta potential measurements for coagulation control: pilot-plant experiences from UK and US waters with elevated organics. Water Science and Technology: Water Supply, 2005, 5, 49-56.	1.0	14
178	A novel approach to the anaerobic treatment of municipal wastewater in temperate climates through primary sludge fortification. Environmental Technology (United Kingdom), 2009, 30, 985-994.	1.2	14
179	Interactions between Organic Model Compounds and Ion Exchange Resins. Environmental Science & Technology, 2019, 53, 9734-9743.	4.6	14
180	Pathogens in urban wastewaters suitable for reuse. Urban Water Journal, 2009, 6, 291-301.	1.0	13

#	Article	IF	CITATIONS
181	Characterisation of natural organic matter (NOM) removed by magnetic ion exchange resin (MIEX®) Tj ETQq1	1 0,784314 1.0	4 rgBT /Ov∉r
182	Anaerobic treatment of fortified municipal wastewater in temperate climates. Journal of Chemical Technology and Biotechnology, 2013, 88, 1280-1288.	1.6	13
183	Quantifying the performance of a hybrid anion exchanger/adsorbent for phosphorus removal using mass spectrometry coupled with batch kinetic trials. Environmental Technology (United Kingdom), 2018, 39, 2304-2314.	1.2	13
184	Application of charge measurement to water treatment processes. Water Science and Technology: Water Supply, 2004, 4, 49-56.	1.0	12
185	Integrating anaerobic processes into wastewater treatment. Water Science and Technology, 2011, 63, 1459-1466.	1.2	12
186	Improving the Energy Balance of an Integrated Microalgal Wastewater Treatment Process. Waste and Biomass Valorization, 2014, 5, 245-253.	1.8	12
187	Influence of light regime on the performance of an immobilised microalgae reactor for wastewater nutrient removal. Algal Research, 2019, 44, 101648.	2.4	12
188	Chlorine disinfection of drinking water assessed by flow cytometry: New insights. Environmental Technology and Innovation, 2020, 19, 101032.	3.0	12
189	Understanding why fat, oil and grease (FOG) bioremediation can be unsuccessful. Journal of Environmental Management, 2020, 267, 110647.	3.8	12
190	Application of activated carbon fabric for the removal of a recalcitrant pesticide from agricultural run-off. Science of the Total Environment, 2022, 815, 152626.	3.9	12
191	Bioaugmentation of pilot-scale slow sand filters can achieve compliant levels for the micropollutant metaldehyde in a real water matrix. Water Research, 2022, 211, 118071.	5.3	12
192	Comparison of ultraviolet light emitting diodes with traditional UV for greywater disinfection. Journal of Water Reuse and Desalination, 2015, 5, 17-27.	1.2	11
193	Metaldehyde removal from drinking water by adsorption onto filtration media: mechanisms and optimisation. Environmental Science: Water Research and Technology, 2018, 4, 1543-1552.	1.2	11
194	Nitrogen oxidation consortia dynamics influence the performance of full-scale rotating biological contactors. Environment International, 2020, 135, 105354.	4.8	11
195	Membrane bioreactors — hybrid activated sludge or a new process?. Membrane Technology, 2003, 2003, 5-8.	0.5	10
196	Membrane Gas Absorbers for H ₂ S Removal – Design, Operation and Technology Integration into Existing Odour Treatment Strategies. Environmental Technology (United Kingdom), 2005, 26, 793-804.	1.2	10
197	Risk assessment frameworks for MAR schemes in the UK. Environmental Earth Sciences, 2015, 73, 7747-7757.	1.3	10
198	Influence of sludge layer properties on the hydraulic behaviour of gravel-based vertical flow constructed wetlands for primary treatment of sewage. Science of the Total Environment, 2019, 691, 1137-1143.	3.9	10

#	Article	IF	CITATIONS
199	Developing methods to evaluate odour control products. Water Science and Technology, 2004, 50, 225-232.	1.2	9
200	Cross sectoral and scale-up impacts of greywater recycling technologies on catchment hydrological flows. Water Science and Technology, 2008, 57, 741-746.	1.2	9
201	Managed aquifer recharge with reclaimed water: approaches to a European guidance framework. Water Science and Technology, 2010, 62, 1265-1273.	1.2	9
202	Assessing filter robustness at drinking water treatment plants. Water and Environment Journal, 2015, 29, 16-26.	1.0	9
203	The effect of high hydraulic loading rate on the removal efficiency of a quadruple media filter for tertiary wastewater treatment. Water Research, 2016, 107, 102-112.	5.3	9
204	A multi omponent method to determine pesticides in surface water by liquid chromatography tandem quadrupole mass spectrometry. Water and Environment Journal, 2017, 31, 380-387.	1.0	9
205	On the potential of on-line free-surface constructed wetlands for attenuating pesticide losses from agricultural land to surface waters. Environmental Chemistry, 2019, 16, 563.	0.7	9
206	Assessing the potential of enhanced primary clarification to manage fats, oils and grease (FOG) at wastewater treatment works. Science of the Total Environment, 2020, 728, 138415.	3.9	9
207	The effects of changing NOM composition and characteristics on coagulation performance, optimisation and control. Water Science and Technology: Water Supply, 2004, 4, 95-102.	1.0	8
208	Flocs through the looking glass. Water Science and Technology, 2004, 50, 47-54.	1.2	8
209	Rapid gravity filtration operational performance assessment and diagnosis for preventative maintenance from on-line data. Chemical Engineering Journal, 2017, 313, 250-260.	6.6	8
210	Potential influence of sewer heat recovery on in-sewer processes. Water Science and Technology, 2019, 80, 2344-2351.	1.2	8
211	The duplicity of floc strength. Water Science and Technology, 2004, 50, 63-70.	1.2	8
212	Exploring water recycling options for urban environments: a multi-criteria modelling approach. Urban Water, 1999, 1, 187-200.	0.5	7
213	Ballasted Flotation with Glass Microspheres for Removal of Natural Organic Matter. Separation Science and Technology, 2011, 46, 2489-2495.	1.3	7
214	Assessing the potential for tertiary nitrification in sub-surface flow constructed wetlands. Environmental Technology Reviews, 2016, 5, 68-77.	2.1	7
215	Determination of fats, oils and greases in food service establishment wastewater using a modification of the Gerber method. Water and Environment Journal, 2020, 34, 5-13.	1.0	7
216	Water recycling: how feasible is it?. Filtration and Separation, 2001, 38, 26-29.	0.2	6

3

#	Article	IF	CITATIONS
217	Domestic carbonation process optimisation. Journal of Food Engineering, 2002, 52, 405-412.	2.7	6
218	Just how different are stakeholder group opinions on water management issues?. Desalination, 2008, 218, 132-141.	4.0	6
219	Optimising dissolved air flotation/filtration treatment of algae-laden lagoon effluent using surface charge: a Bolivar treatment plant case study. Water Science and Technology, 2012, 66, 1684-1690.	1.2	6
220	What is the impact of personal care products selection on greywater characteristics and reuse?. Science of the Total Environment, 2020, 749, 141413.	3.9	6
221	Achieving drinking water compliance levels for metaldehyde with an acclimated sand bioreactor. Water Research, 2020, 184, 116084.	5.3	6
222	Development and calibration of a new mathematical model for the description of an ion-exchange process for ammonia removal in the presence of competing ions. Water Research, 2021, 206, 117779.	5.3	6
223	Advanced biological unit processes for domestic water recycling. Water Science and Technology, 2001, 43, 211-8.	1.2	6
224	Long-Term Performance of Constructed Wetlands with Chemical Dosing for Phosphorus Removal. , 2015, , 273-292.		5
225	Treatment and Energy Efficiency of a Granular Sludge Anaerobic Membrane Reactor Handling Domestic Sewage. Procedia Engineering, 2012, 44, 1977-1979.	1.2	4
226	Diagnosis of an anaerobic pond treating temperate domestic wastewater: An alternative sludge strategy for small works. Ecological Engineering, 2014, 63, 64-71.	1.6	4
227	Influence of Alkalinity on the Efficiency and Catalyst Behavior of Photoâ€Assisted Processes. Chemical Engineering and Technology, 2016, 39, 158-165.	0.9	4
228	Impact of pre-treatment technologies on soil aquifer treatment. Journal of Water Reuse and Desalination, 2017, 7, 1-10.	1.2	4
229	A new conceptual model of pesticide transfers from agricultural land to surface waters with a specific focus on metaldehyde. Environmental Sciences: Processes and Impacts, 2020, 22, 956-972.	1.7	4
230	Energy potential of household fats, oils and grease waste. Water and Environment Journal, 2022, 36, 132-141.	1.0	4
231	High rate algal systems for treating wastewater: A comparison. Algal Research, 2022, 65, 102754.	2.4	4
232	Submerged Anaerobic Membrane Bioreactors (SAMBR): Ready for the Big Ball?. Proceedings of the Water Environment Federation, 2007, 2007, 6393-6401.	0.0	3
233	Parameters Affecting Haloacetic Acid and Trihalomethane Concentrations in Treated UK Drinking Waters. ACS Symposium Series, 2008, , 95-108.	0.5	3

Disinfection Byproduct Control. , 2014, , 120-147.

#	Article	IF	CITATIONS
235	Development of a staged anaerobic pond for methane recovery from domestic wastewater. Ecological Engineering, 2018, 122, 169-176.	1.6	3
236	The impact of hydraulic retention time on the performance of two configurations of anaerobic pond for municipal sewage treatment. Environmental Technology (United Kingdom), 2022, 43, 3905-3918.	1.2	3
237	Energy Recovery from Immobilised Cells of Scenedesmus obliquus after Wastewater Treatment. Lecture Notes in Civil Engineering, 2017, , 266-271.	0.3	3
238	Exploring the use of flow cytometry for understanding the efficacy of disinfection in chlorine contact tanks. Water Research, 2022, 217, 118420.	5.3	3
239	The potential for heat recovery and thermal energy storage in the UK using buried infrastructure. Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction, 0, , 1-14.	1.1	3
240	Direct molecular hydrogen sulphide scrubbing with hollow fibre membranes. Water Science and Technology, 2001, 44, 135-142.	1.2	2
241	Practical application of fractal dimension. Interface Science and Technology, 2006, , 45-61.	1.6	2
242	Technologies for urban water recycling. Water Practice and Technology, 2008, 3, .	1.0	2
243	Reuse Of Urban Water: Impact Of Product Choice. , 2008, , 13-22.		2
244	Waste stabilisation ponds for anaerobic wastewater treatment. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2012, 165, 201-213.	0.4	2
245	Nitrogen removal from temperate anaerobic–aerobic twoâ€stage biological systems: impact of reactor type and wastewater strength. Journal of Chemical Technology and Biotechnology, 2013, 88, 2107-2114.	1.6	2
246	Assessment of activated sludge, membrane bioreactors and vertical flow wetlands for upgrading sewage treatment works. Environmental Technology (United Kingdom), 2017, 38, 154-162.	1.2	2
247	Chemical vs. Biological Treatment of Grey Water. , 2000, , 383-392.		2
248	Direct molecular hydrogen sulphide scrubbing with hollowfibre membranes. Water Science and Technology, 2001, 44, 135-42.	1.2	2
249	THE INFLUENCE OF MEMBRANE CONFIGURATION ON THE EFFICACY OF MEMBRANE BIOREACTORS FOR DOMESTIC WASTE WATER RECYCLING. Proceedings of the Water Environment Federation, 2000, 2000, 507-526.	0.0	1
250	Indirect effects of membrane configuration on MBR sludge filterability. Desalination and Water Treatment, 2009, 9, 246-252.	1.0	1
251	The Multiple Benefits of High Concentration Electrolyte in Chemisorption Using a Micro-Porous Hollow Fibre Membrane Contactor (hfmc). Procedia Engineering, 2012, 44, 953-954.	1.2	1
252	The scope for potential energy savings in the flocculation process. Water and Environment Journal, 2012, 26, 319-323.	1.0	1

Bruce Jefferson

#	Article	IF	CITATIONS
253	The role of concentrations gradients on phosphorus and iron dynamics from chemically-dosed horizontal flow wetlands for tertiary sewage treatment. Water Science and Technology, 2019, 79, 2126-2134.	1.2	1
254	Methods for understanding organic fouling in MBRs. Water Science and Technology, 2004, 49, 237-44.	1.2	1
255	Flocs through the looking glass. Water Science and Technology, 2004, 50, 47-54.	1.2	1
256	Adhesion analysis of scaling systems. Interface Science and Technology, 2006, 10, 257-277.	1.6	0
257	ARE MEMBRANES THE ANSWER TO ODOR?. Proceedings of the Water Environment Federation, 2007, 2007, 2792-2814.	0.0	0
258	Membrane-based processes. , 2019, , .		0
259	Developing methods to evaluate odour control products. Water Science and Technology, 2004, 50, 225-32.	1.2	0
260	The Development and Use of CFD Models for Water Treatment Processes. , 0, , .		0
261	Evaluating the performance of conventional DAF and PosiDAF processes for cyanobacteria separation at a pilot plant scale. H2Open Journal, 0, , .	0.8	0