
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9249908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Duckweed (Lemnaceae) for potentially nutritious human food: A review. Food Reviews International, 2023, 39, 3620-3634.	4.3	17
2	Effect of environment and field management strategies on phenolic acid profiles of hard red winter wheat genotypes. Journal of the Science of Food and Agriculture, 2022, 102, 2424-2431.	1.7	9
3	Effect of adding modified pea protein as functional extender on the physical and sensory properties of beef patties. LWT - Food Science and Technology, 2022, 154, 112774.	2.5	25
4	Registration of â€~KS Hamilton' hard red winter wheat. Journal of Plant Registrations, 2022, 16, 73-79.	0.4	1
5	Antioxidative hydrolysates from corn gluten meal may effectively reduce lipid oxidation and inhibit HepC2 cancer cell growth. Journal of Agriculture and Food Research, 2022, 7, 100252.	1.2	4
6	Normal rice flours perform better in glutenâ€free bread than glutinous rice flours. Journal of Food Science, 2022, 87, 554-566.	1.5	10
7	Comparative evaluation of physicochemical and fermentative responses of three sorghum varieties from dryland and irrigated land and the properties of proteins from distillers' grains. Journal of Cereal Science, 2022, 104, 103432.	1.8	2
8	Understanding macromolecular interactions: key to developing new cerealâ€based foods. International Journal of Food Science and Technology, 2022, 57, 1847-1848.	1.3	0
9	Emulsifying properties of pea protein/guar gum conjugates and mayonnaise application. International Journal of Food Science and Technology, 2022, 57, 3955-3966.	1.3	13
10	Pea protein composition, functionality, modification, and food applications: A review. Advances in Food and Nutrition Research, 2022, , 71-127.	1.5	18
11	Significance of milling methods on brown teff flour, dough, and bread properties. Journal of Texture Studies, 2022, 53, 478-489.	1.1	5
12	Improving functional properties of pea protein through "green―modifications using enzymes and polysaccharides. Food Chemistry, 2022, 385, 132687.	4.2	32
13	Influence of chickpea flour and yellow pea concentrate additive amount and inâ€barrel moisture content on the physiochemical properties of extruded extrudates. Journal of Food Processing and Preservation, 2022, 46, .	0.9	0
14	A comprehensive review of wheat phytochemicals: From farm to fork and beyond. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 2274-2308.	5.9	23
15	Quantitative assessment of wheat quality using nearâ€infrared spectroscopy: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 2956-3009.	5.9	21
16	Production of distilled spirits using grain sorghum through liquid fermentation. Journal of Agriculture and Food Research, 2022, 9, 100314.	1.2	5
17	Modulating molecular interactions in pea protein to improve its functional properties. Journal of Agriculture and Food Research, 2022, 8, 100313.	1.2	4
18	Improvement of whole wheat dough and bread properties by emulsifiers. Grain & Oil Science and Technology, 2022, 5, 59-69.	2.0	5

#	Article	IF	CITATIONS
19	Comprehensive Evaluation and Comparison of Machine Learning Methods in QSAR Modeling of Antioxidant Tripeptides. ACS Omega, 2022, 7, 25760-25771.	1.6	15
20	Drying methods affect physicochemical and functional properties of quinoa protein isolate. Food Chemistry, 2021, 339, 127823.	4.2	102
21	Hempseed as a nutritious and healthy human food or animal feed source: a review. International Journal of Food Science and Technology, 2021, 56, 530-543.	1.3	41
22	Rapid determination of total phenolic content of whole wheat flour using near-infrared spectroscopy and chemometrics. Food Chemistry, 2021, 344, 128633.	4.2	34
23	Changes in phenolic profiles and antioxidant activities during the whole wheat bread-making process. Food Chemistry, 2021, 345, 128851.	4.2	44
24	Rapid quantification of total phenolics and ferulic acid in whole wheat using UV–Vis spectrophotometry. Food Control, 2021, 123, 107691.	2.8	40
25	Registration of â€ [~] KS Silverado' hard white winter wheat. Journal of Plant Registrations, 2021, 15, 147-153.	0.4	2
26	The addition of alpha amylase improves the quality of Chinese dried noodles. Journal of Food Science, 2021, 86, 860-866.	1.5	12
27	An International Collaborative Study on Trypsin Inhibitor Assay for Legumes, Cereals, and Related Products. JAOCS, Journal of the American Oil Chemists' Society, 2021, 98, 375-390.	0.8	11
28	Effect of genotype on the physicochemical, nutritional, and antioxidant properties of hempseed. Journal of Agriculture and Food Research, 2021, 3, 100119.	1.2	2
29	Effects of environment, nitrogen, and sulfur on total phenolic content and phenolic acid composition of winter wheat grain. Cereal Chemistry, 2021, 98, 903-911.	1.1	10
30	199 Effect of the Pelleting Process on Diet Formulations with Varying Levels of Crystalline Amino Acids and Reducing Sugars on Digestibility in Growing Pigs. Journal of Animal Science, 2021, 99, 66-67.	0.2	0
31	38 Evaluation of Sorghum Phenolic Compounds for Their Antimicrobial Activities Against Liver Abscess Causing Pathogens in Feedlot Cattle. Journal of Animal Science, 2021, 99, 32-32.	0.2	0
32	PSIII-15 Effect of the Pelleting Process on Diet Formulations with Varying Levels of Crystalline AA and Reducing Sugars on Nursery Pig Growth Performance. Journal of Animal Science, 2021, 99, 171-172.	0.2	0
33	48 Evaluation of Antimicrobial Activities of Phytophenols Against Bacterial Pathogens That Cause Liver Abscesses in Feedlot Cattle. Journal of Animal Science, 2021, 99, 151-151.	0.2	0
34	Influence of antioxidant dietary fiber on dough properties and bread qualities: A review. Journal of Functional Foods, 2021, 80, 104434.	1.6	28
35	Proteins in dried distillers' grains with solubles: A review of animal feed value and potential nonâ€food uses. JAOCS, Journal of the American Oil Chemists' Society, 2021, 98, 957-968.	0.8	5
36	Parallel comparison of functional and physicochemical properties of common pulse proteins. LWT - Food Science and Technology, 2021, 146, 111594.	2.5	28

#	Article	IF	CITATIONS
37	Acylation modification and/or guar gum conjugation enhanced functional properties of pea protein isolate. Food Hydrocolloids, 2021, 117, 106686.	5.6	62
38	Effect of Pulse Type and Substitution Level on Dough Rheology and Bread Quality of Whole Wheat-Based Composite Flours. Processes, 2021, 9, 1687.	1.3	15
39	Potential bioaccessibility of phenolic acids in whole wheat products during in vitro gastrointestinal digestion and probiotic fermentation. Food Chemistry, 2021, 362, 130135.	4.2	20
40	Comprehensive Understanding of Roller Milling on the Physicochemical Properties of Red Lentil and Yellow Pea Flours. Processes, 2021, 9, 1836.	1.3	13
41	Registration of â€~KS Western Star' hard red winter wheat. Journal of Plant Registrations, 2021, 15, 140-146.	0.4	2
42	Registration of â€~KS Dallas' hard red winter wheat. Journal of Plant Registrations, 2021, 15, 154-160.	0.4	2
43	Effects of Different Pilot-Scale Milling Methods on Bioactive Components and End-Use Properties of Whole Wheat Flour. Foods, 2021, 10, 2857.	1.9	8
44	Effects of the Pelleting Process on Diet Formulations with Varying Levels of Crystalline Amino Acids and Reducing Sugars on Nursery Pig Growth Performance. Kansas Agricultural Experiment Station Research Reports, 2021, 7, .	0.0	0
45	Antioxidant and Emulsifying Activities of Corn Gluten Meal Hydrolysates in Oilâ€inâ€Water Emulsions. JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 175-185.	0.8	19
46	Potassium bicarbonate improves dough and cookie characteristics through influencing physicochemical and conformation properties of wheat gluten. Food Chemistry: X, 2020, 5, 100075.	1.8	5
47	Individual effects of enzymes and vital wheat gluten on whole wheat dough and bread properties. Journal of Food Science, 2020, 85, 4201-4208.	1.5	19
48	Advanced properties of gluten-free cookies, cakes, and crackers: A review. Trends in Food Science and Technology, 2020, 103, 200-213.	7.8	118
49	Production and Characterization of Antioxidative Hydrolysates and Peptides from Corn Gluten Meal Using Papain, Ficin, and Bromelain. Molecules, 2020, 25, 4091.	1.7	41
50	Antioxidant performances of corn gluten meal and DDGS protein hydrolysates in food, pet food, and feed systems. Journal of Agriculture and Food Research, 2020, 2, 100030.	1.2	23
51	Formation and physicochemical properties of amyloid fibrils from soy protein. International Journal of Biological Macromolecules, 2020, 149, 609-616.	3.6	52
52	Feeding the Future: Plant-Based Meat for Global Food Security and Environmental Sustainability. Cereal Foods World, 2020, 65, .	0.7	3
53	Physicochemical properties and gluten structures of hard wheat flour doughs as affected by salt. Food Chemistry, 2019, 275, 569-576.	4.2	69
54	Antioxidant Characteristics and Identification of Peptides from Sorghum Kafirin Hydrolysates. Journal of Food Science, 2019, 84, 2065-2076.	1.5	22

#	Article	IF	CITATIONS
55	Isothermal Curing Kinetics of Epoxidized Fatty Acid Methyl Esters and Triacylglycerols. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 1035-1045.	0.8	0
56	Antioxidant Activities of Sorghum Kafirin Alcalase Hydrolysates and Membrane/Gel Filtrated Fractions. Antioxidants, 2019, 8, 131.	2.2	33
57	Glyphosate contamination in grains and foods: An overview. Food Control, 2019, 106, 106710.	2.8	100
58	Antioxidant and anticancer effects in human hepatocarcinoma (HepG2) cells of papain-hydrolyzed sorghum kafirin hydrolysates. Journal of Functional Foods, 2019, 58, 374-382.	1.6	35
59	Effect of added sugars and amino acids on acrylamide formation in white pan bread. Cereal Chemistry, 2019, 96, 545-553.	1.1	10
60	Changes in Bread Quality, Antioxidant Activity, and Phenolic Acid Composition of Wheats During Early‣tage Germination. Journal of Food Science, 2019, 84, 457-465.	1.5	16
61	Effect of amino acids on Maillard reaction product formation and total antioxidant capacity in white pan bread. International Journal of Food Science and Technology, 2019, 54, 1372-1380.	1.3	19
62	Aggregation behavior of semolina gluten during dough production and fresh pasta cooking upon kansui treatment. Food Chemistry, 2019, 278, 579-586.	4.2	16
63	Dough properties, bread quality, and associated interactions with added phenolic compounds: A review. Journal of Functional Foods, 2019, 52, 629-639.	1.6	91
64	Effect of xanthan gum on dough properties and bread qualities made from whole wheat flour. Cereal Chemistry, 2019, 96, 263-272.	1.1	27
65	Corn. , 2019, , 33-53.		1
66	Bread characteristics and antioxidant activities of Maillard reaction products of white pan bread containing various sugars. LWT - Food Science and Technology, 2018, 95, 308-315.	2.5	51
67	Phenolic acid composition and antioxidant activity of hard red winter wheat varieties. Journal of Food Biochemistry, 2018, 42, e12682.	1.2	23
68	Epoxidized and Acrylated Epoxidized Camelina Oils for Ultraviolet urable Wood Coatings. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 1307-1318.	0.8	16
69	Potassium chloride affects gluten microstructures and dough characteristics similarly as sodium chloride. Journal of Cereal Science, 2018, 82, 155-163.	1.8	30
70	Improvers and functional ingredients in whole wheat bread: A review of their effects on dough properties and bread quality. Trends in Food Science and Technology, 2018, 81, 10-24.	7.8	156
71	Effect of Sodium Chloride and Sodium Bicarbonate on the Physicochemical Properties of Soft Wheat Flour Doughs and Gluten Polymerization. Journal of Agricultural and Food Chemistry, 2018, 66, 6840-6850.	2.4	46
72	Optimization of Soybean Oil Based Pressureâ€Sensitive Adhesives Using a Full Factorial Design. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 713-721.	0.8	7

#	Article	IF	CITATIONS
73	Competitive Nucleophilic Attack Chemistry Based on Undecenoic Acid: A New Chemical Route for Plant-Oil-Based Epoxies. ACS Sustainable Chemistry and Engineering, 2016, 4, 5718-5729.	3.2	7
74	Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors. Journal of Power Sources, 2016, 328, 510-519.	4.0	123
75	Mesoporous Hybrids of Reduced Graphene Oxide and Vanadium Pentoxide for Enhanced Performance in Lithium-Ion Batteries and Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2016, 8, 9200-9210.	4.0	70
76	Plasticization effects of dihydroxyl soybean oil improve flexibilities of epoxyâ€based films for coating applications. Journal of Applied Polymer Science, 2015, 132, .	1.3	12
77	Polyols from epoxidized soybean oil and alpha hydroxyl acids and their adhesion properties from UV polymerization. International Journal of Adhesion and Adhesives, 2015, 63, 1-8.	1.4	12
78	Copolymers from epoxidized soybean oil and lactic acid oligomers for pressure-sensitive adhesives. RSC Advances, 2015, 5, 27256-27265.	1.7	31
79	Synthesis and characterization of acrylic polyols and polymers from soybean oils for pressure-sensitive adhesives. RSC Advances, 2015, 5, 44009-44017.	1.7	40
80	Camelina oil derivatives and adhesion properties. Industrial Crops and Products, 2015, 73, 73-80.	2.5	33
81	Effective Infiltration of Gel Polymer Electrolyte into Silicon-Coated Vertically Aligned Carbon Nanofibers as Anodes for Solid-State Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 20909-20918.	4.0	37
82	Oxirane Cleavage Kinetics of Epoxidized Soybean Oil by Water and UVâ€Polymerized Resin Adhesion Properties. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 121-131.	0.8	9
83	Epoxidation of Camelina sativa oil and peel adhesion properties. Industrial Crops and Products, 2015, 64, 1-8.	2.5	76
84	Photoactivity of Poly(lactic acid) nanocomposites modulated by TiO ₂ nanofillers. Journal of Applied Polymer Science, 2014, 131, .	1.3	5
85	Diâ€Hydroxylated Soybean Oil Polyols with Varied Hydroxyl Values and Their Influence on UV urable Pressure‧ensitive Adhesives. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1425-1432.	0.8	27
86	Utilization of sorghum lignin to improve adhesion strength of soy protein adhesives on wood veneer. Industrial Crops and Products, 2013, 50, 501-509.	2.5	65
87	Synthesis and Characterization of Amphiphilic Reduced Graphene Oxide with Epoxidized Methyl Oleate. Advanced Materials, 2012, 24, 2123-2129.	11.1	25
88	lsothermal crystallization and melting behaviors of bionanocomposites from poly(lactic acid) and TiO ₂ nanowires. Journal of Applied Polymer Science, 2012, 124, 2968-2977.	1.3	23
89	Mechanical and thermal properties of biocomposites from poly(lactic acid) and DDGS. Journal of Applied Polymer Science, 2011, 121, 589-597.	1.3	41
90	Synthesis and characterization of bionanocomposites of poly(lactic acid) and TiO2 nanowires by in situ polymerization. Polymer, 2011, 52, 2367-2375.	1.8	60

#	Article	IF	CITATIONS
91	Nanocomposites of Poly(lactic acid) and Surface-Grafted MgO Nanoparticles: Preparation and Characterization. Journal of Biobased Materials and Bioenergy, 2011, 5, 452-459.	0.1	8
92	Mechanical and thermal properties, morphology and relaxation characteristics of poly(lactic acid) and soy flour/wood flour blends. Polymer International, 2010, 59, 1099-1109.	1.6	9
93	Preparation and Characterization of Polymerâ^'Inorganic Nanocomposites by In Situ Melt Polycondensation of <scp>I</scp> -Lactic Acid and Surface-Hydroxylated MgO. Biomacromolecules, 2010, 11, 1847-1855.	2.6	74
94	Mechanical and water soaking properties of medium density fiberboard with wood fiber and soybean protein adhesive. Bioresource Technology, 2009, 100, 3556-3562.	4.8	116
95	Studies on vibration characteristics of a pear using finite element method. Journal of Zhejiang University: Science B, 2006, 7, 491-496.	1.3	13
96	Developing Functionally Enhanced Pea Proteins as Novel Food Ingredients. , 0, , .		0
97	Modulating intermolecular interactions of pea protein isolate to improve its functional properties. , 0, , .		0