Xiao-bing Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9249672/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biology, 2017, 18, 35.	8.8	348
2	Highly efficient genome editing via CRISPR–Cas9 in human pluripotent stem cells is achieved by transient BCL-XL overexpression. Nucleic Acids Research, 2018, 46, 10195-10215.	14.5	93
3	Dynamics and competition of CRISPR–Cas9 ribonucleoproteins and AAV donor-mediated NHEJ, MMEJ and HDR editing. Nucleic Acids Research, 2021, 49, 969-985.	14.5	90
4	Different Effects of sgRNA Length on CRISPR-mediated Gene Knockout Efficiency. Scientific Reports, 2016, 6, 28566.	3.3	77
5	PDGFB-based stem cell gene therapy increases bone strength in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3893-900.	7.1	53
6	Cellular Reprogramming of Human Peripheral Blood Cells. Genomics, Proteomics and Bioinformatics, 2013, 11, 264-274.	6.9	50
7	Curing hemophilia A by NHEJ-mediated ectopic F8 insertion in the mouse. Genome Biology, 2019, 20, 276.	8.8	50
8	Enhanced Generation of Integration-free iPSCs from Human Adult Peripheral Blood Mononuclear Cells with an Optimal Combination of Episomal Vectors. Stem Cell Reports, 2016, 6, 873-884.	4.8	48
9	Generation of iPS Cells from Human Peripheral Blood Mononuclear Cells Using Episomal Vectors. Methods in Molecular Biology, 2014, 1357, 57-69.	0.9	47
10	Effective control of large deletions after double-strand breaks by homology-directed repair and dsODN insertion. Genome Biology, 2021, 22, 236.	8.8	36
11	Single-Cell RNA-Seq Reveals that CD9 Is a Negative Marker of Glucose-Responsive Pancreatic β-like Cells Derived from Human Pluripotent Stem Cells. Stem Cell Reports, 2020, 15, 1111-1126.	4.8	35
12	TSLP or ILâ€7 provide an ILâ€7Rα signal that is critical for human B lymphopoiesis. European Journal of Immunology, 2016, 46, 2155-2161.	2.9	34
13	Optimizing the method for generation of integration-free induced pluripotent stem cells from human peripheral blood. Stem Cell Research and Therapy, 2018, 9, 163.	5.5	27
14	Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration. Biomaterials, 2015, 73, 51-59.	11.4	25
15	Direct Conversion of Cord Blood CD34+ Cells Into Neural Stem Cells by OCT4. Stem Cells Translational Medicine, 2015, 4, 755-763.	3.3	24
16	High-Level Precise Knockin of iPSCs by Simultaneous Reprogramming and Genome Editing of Human Peripheral Blood Mononuclear Cells. Stem Cell Reports, 2018, 10, 1821-1834.	4.8	21
17	Directed cardiomyogenesis of human pluripotent stem cells by modulating Wnt/β-catenin and BMP signalling with small molecules. Biochemical Journal, 2015, 469, 235-241.	3.7	20
18	Matrix reverses immortalization-mediated stem cell fate determination. Biomaterials, 2021, 265, 120387.	11.4	15

XIAO-BING ZHANG

#	Article	IF	CITATIONS
19	Generation of Integration-free Induced Pluripotent Stem Cells from Human Peripheral Blood Mononuclear Cells Using Episomal Vectors. Journal of Visualized Experiments, 2017, , .	0.3	13
20	CD9 blockade suppresses disease progression of high-risk pediatric B-cell precursor acute lymphoblastic leukemia and enhances chemosensitivity. Leukemia, 2020, 34, 709-720.	7.2	13
21	Improved and Flexible HDR Editing by Targeting Introns in iPSCs. Stem Cell Reviews and Reports, 2022, 18, 1822-1833.	3.8	6
22	Stem cells immortalized by hTERT perform differently from those immortalized by SV40LT in proliferation, differentiation, and reconstruction of matrix microenvironment. Acta Biomaterialia, 2021, 136, 184-198.	8.3	5
23	Gene knockout in highly purified mouse hematopoietic stem cells by CRISPR/Cas9 technology. Journal of Immunological Methods, 2021, 495, 113070.	1.4	4
24	R4 RGS proteins suppress engraftment of human hematopoietic stem/progenitor cells by modulating SDF-1/CXCR4 signaling. Blood Advances, 2021, 5, 4380-4392.	5.2	4
25	Modulation of Immune Reaction in Hydrodynamic Gene Therapy for Hemophilia A. Human Gene Therapy, 2022, 33, 404-420.	2.7	2
26	The Tetraspanin CD9 Regulates Engraftment and Mobilization of Human CD34+ Hematopoietic Stem/Progenitor Cells and Modulates VLA-4 Activity. Blood, 2015, 126, 1169-1169.	1.4	0
27	RGS1 and RGS13 Regulate SDF-1-Mediated Responses and Homing in Human Cord Blood CD34+ Hematopoietic Stem/Progenitor Cells. Blood, 2015, 126, 2371-2371.	1.4	0
28	R4 Rgs Subfamily Proteins Negatively Regulates SDF-1/CXCR4 Signaling in CD34+ Hematopoietic Stem and Progenitor Cells. Blood, 2016, 128, 5048-5048.	1.4	0