Erik SjĶgren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9249180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Does the choice of applied physiologicallyâ€based pharmacokinetics platform matter? A case study on simvastatin disposition and drug–drug interaction. CPT: Pharmacometrics and Systems Pharmacology, 2022, 11, 1194-1209.	2.5	5
2	Applications of Physiologically Based Biopharmaceutics Modeling (PBBM) to Support Drug Product Quality: A Workshop Summary Report. Journal of Pharmaceutical Sciences, 2021, 110, 594-609.	3.3	27
3	InÂVitro Biopredictive Methods: A Workshop Summary Report. Journal of Pharmaceutical Sciences, 2021, 110, 567-583.	3.3	18
4	A Physiologically-Based Pharmacokinetic Framework for Prediction of Drug Exposure in Malnourished Children. Pharmaceutics, 2021, 13, 204.	4.5	5
5	In Vitro Cell Toxicity and Intracellular Uptake of Doxorubicin Exposed as a Solution or Liposomes: Implications for Treatment of Hepatocellular Carcinoma. Cells, 2021, 10, 1717.	4.1	25
6	Pulmonary drug absorption and systemic exposure in human: Predictions using physiologically based biopharmaceutics modeling. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 156, 191-202.	4.3	16
7	Drug Absorption Parameters Obtained Using the Isolated Perfused Rat Lung Model Are Predictive of Rat In Vivo Lung Absorption. AAPS Journal, 2020, 22, 71.	4.4	16
8	Intestinal absorption of BCS class II drugs administered as nanoparticles: A review based on in vivo data from intestinal perfusion models. ADMET and DMPK, 2020, 8, 375-390.	2.1	8
9	The effect of intradermal microdosing of a transient receptor potential cation channel subfamily V member 1 antagonist on heat evoked pain and thermal thresholds in normal and ultravioletâ€C exposed skin in healthy volunteers. European Journal of Pain, 2019, 23, 1767-1779.	2.8	3
10	Lipiodol-based emulsions used for transarterial chemoembolization and drug delivery: Effects of composition on stability and product quality. Journal of Drug Delivery Science and Technology, 2019, 53, 101143.	3.0	14
11	Liver Cancer Cell Lines Treated with Doxorubicin under Normoxia and Hypoxia: Cell Viability and Oncologic Protein Profile. Cancers, 2019, 11, 1024.	3.7	41
12	Open Systems Pharmacology Community—An Open Access, Open Source, Open Science Approach to Modeling and Simulation in Pharmaceutical Sciences. CPT: Pharmacometrics and Systems Pharmacology, 2019, 8, 878-882.	2.5	58
13	Does the Intake of Ethanol Affect Oral Absorption of Poorly Soluble Drugs?. Journal of Pharmaceutical Sciences, 2019, 108, 1765-1771.	3.3	6
14	Pulmonary Dissolution of Poorly Soluble Compounds Studied in an ex Vivo Rat Lung Model. Molecular Pharmaceutics, 2019, 16, 3053-3064.	4.6	23
15	Dissolution and Translational Modeling Strategies Toward Establishing an In Vitro-In Vivo Link—a Workshop Summary Report. AAPS Journal, 2019, 21, 29.	4.4	70
16	Pulmonary absorption – estimation of effective pulmonary permeability and tissue retention of ten drugs using an ex vivo rat model and computational analysis. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 124, 1-12.	4.3	31
17	Reply to "Comment on â€~ <i>In Vivo</i> Drug Delivery Performance of Lipiodol-Based Emulsion or Drug-Eluting Beads in Patients with Hepatocellular Carcinoma'― Molecular Pharmaceutics, 2018, 15, 336-340	4.6	1
18	Applications of Clinically Relevant Dissolution Testing: Workshop Summary Report. AAPS Journal, 2018, 20, 93.	4.4	51

Erik Sjögren

#	Article	IF	CITATIONS
19	Porcine and Human In Vivo Simulations for Doxorubicin-Containing Formulations Used in Locoregional Hepatocellular Carcinoma Treatment. AAPS Journal, 2018, 20, 96.	4.4	7
20	The effects of three absorption-modifying critical excipients on the in vivo intestinal absorption of six model compounds in rats and dogs. International Journal of Pharmaceutics, 2018, 547, 158-168.	5.2	38
21	A Model-Based Approach To Assessing the Importance of Intracellular Binding Sites in Doxorubicin Disposition. Molecular Pharmaceutics, 2017, 14, 686-698.	4.6	21
22	<i>In Vivo</i> Predictive Dissolution (IPD) and Biopharmaceutical Modeling and Simulation: Future Use of Modern Approaches and Methodologies in a Regulatory Context. Molecular Pharmaceutics, 2017, 14, 1307-1314.	4.6	48
23	<i>In Vivo</i> Drug Delivery Performance of Lipiodol-Based Emulsion or Drug-Eluting Beads in Patients with Hepatocellular Carcinoma. Molecular Pharmaceutics, 2017, 14, 448-458.	4.6	30
24	Lipiodol does not affect the tissue distribution of intravenous doxorubicin infusion in pigs. Journal of Pharmacy and Pharmacology, 2017, 69, 135-142.	2.4	6
25	Regional Intestinal Permeability in Rats: A Comparison of Methods. Molecular Pharmaceutics, 2017, 14, 4252-4261.	4.6	37
26	Preclinical Effect of Absorption Modifying Excipients on Rat Intestinal Transport of Model Compounds and the Mucosal Barrier Marker ⁵¹ Cr-EDTA. Molecular Pharmaceutics, 2017, 14, 4243-4251.	4.6	34
27	<i>In Vivo</i> Mechanisms of Intestinal Drug Absorption from Aprepitant Nanoformulations. Molecular Pharmaceutics, 2017, 14, 4233-4242.	4.6	49
28	Reply to "Comment on †In Silico Modeling of Gastrointestinal Drug Absorption: Predictive Performance of Three Physiologically Based Absorption Models'― Molecular Pharmaceutics, 2017, 14, 340-343.	4.6	6
29	Excised segments of rat small intestine in Ussing chamber studies: A comparison of native and stripped tissue viability and permeability to drugs. International Journal of Pharmaceutics, 2016, 505, 361-368.	5.2	26
30	InÂVitro Release Mechanisms of Doxorubicin From a Clinical Bead Drug-Delivery System. Journal of Pharmaceutical Sciences, 2016, 105, 3387-3398.	3.3	37
31	Regional Intestinal Permeability of Three Model Drugs in Human. Molecular Pharmaceutics, 2016, 13, 3013-3021.	4.6	57
32	Regional Intestinal Permeability in Dogs: Biopharmaceutical Aspects for Development of Oral Modified-Release Dosage Forms. Molecular Pharmaceutics, 2016, 13, 3022-3033.	4.6	32
33	Assessment of Free Drug Concentration in Cyclodextrin Formulations Is Essential to Determine Drug Potency in Functional InAVitro Assays. Journal of Pharmaceutical Sciences, 2016, 105, 2913-2920.	3.3	3
34	<i>In Silico</i> Modeling of Gastrointestinal Drug Absorption: Predictive Performance of Three Physiologically Based Absorption Models. Molecular Pharmaceutics, 2016, 13, 1763-1778.	4.6	67
35	Human <i>in Vivo</i> Regional Intestinal Permeability: Quantitation Using Site-Specific Drug Absorption Data. Molecular Pharmaceutics, 2015, 12, 2026-2039.	4.6	52
36	Direct In Vivo Human Intestinal Permeability (Peff) Determined with Different Clinical Perfusion and Intubation Methods. Journal of Pharmaceutical Sciences, 2015, 104, 2702-2726.	3.3	83

Erik Sjögren

#	Article	IF	CITATIONS
37	Concomitant intake of alcohol may increase the absorption of poorly soluble drugs. European Journal of Pharmaceutical Sciences, 2015, 67, 12-20.	4.0	38
38	Treatment of intermediate stage hepatocellular carcinoma: a review of intrahepatic doxorubicin drug-delivery systems. Therapeutic Delivery, 2014, 5, 447-466.	2.2	30
39	Effects of verapamil on the pharmacokinetics and hepatobiliary disposition of fexofenadine in pigs. European Journal of Pharmaceutical Sciences, 2014, 57, 214-223.	4.0	5
40	PBPK models for the prediction of in vivo performance of oral dosage forms. European Journal of Pharmaceutical Sciences, 2014, 57, 300-321.	4.0	263
41	In vivo methods for drug absorption – Comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects. European Journal of Pharmaceutical Sciences, 2014, 57, 99-151.	4.0	226
42	The Effects of Lipiodol and Cyclosporin A on the Hepatobiliary Disposition of Doxorubicin in Pigs. Molecular Pharmaceutics, 2014, 11, 1301-1313.	4.6	9
43	Pharmacokinetics of an Injectable Modified-Release 2-Hydroxyflutamide Formulation in the Human Prostate Gland Using a Semiphysiologically Based Biopharmaceutical Model. Molecular Pharmaceutics, 2014, 11, 3097-3111.	4.6	19
44	Combining in vitro and in silico methods for better prediction of surfactant effects on the absorption of poorly water soluble drugs—a fenofibrate case example. International Journal of Pharmaceutics, 2014, 473, 356-365.	5.2	19
45	In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: Application of the mechanistic absorption model GI-Sim. European Journal of Pharmaceutical Sciences, 2013, 49, 679-698.	4.0	141
46	Optimized Experimental Design for the Estimation of Enzyme Kinetic Parameters: An Experimental Evaluation. Drug Metabolism and Disposition, 2012, 40, 2273-2279.	3.3	6
47	Binding Processes Determine the Stereoselective Intestinal and Hepatic Extraction of Verapamil in Vivo. Molecular Pharmaceutics, 2012, 9, 3034-3045.	4.6	5
48	The Pharmacokinetics and Hepatic Disposition of Repaglinide in Pigs: Mechanistic Modeling of Metabolism and Transport. Molecular Pharmaceutics, 2012, 9, 823-841.	4.6	24
49	Optimal Experimental Design for Assessment of Enzyme Kinetics in a Drug Discovery Screening Environment. Drug Metabolism and Disposition, 2011, 39, 858-863.	3.3	7
50	Hepatic Disposition of Ximelagatran and Its Metabolites in Pig; Prediction of the Impact of Membrane Transporters Through a Simple Disposition Model. Pharmaceutical Research, 2010, 27, 597-607.	3.5	3
51	The Multiple Depletion Curves Method Provides Accurate Estimates of Intrinsic Clearance (CL _{int}), Maximum Velocity of the Metabolic Reaction (<i>V</i> _{max}), and Michaelis Constant (<i>K</i> _m): Accuracy and Robustness Evaluated through Experimental Data and Monte Carlo Simulations. Drug Metabolism and Disposition, 2009, 37, 47-58	3.3	38
52	Online capillary solid phase extraction and liquid chromatographic separation with quantitative tandem mass spectrometric detection (SPE-LC–MS/MS) of ximelagatran and its metabolites in a complex matrix. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 291-297.	2.3	7