Pitambar Mahanandia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9248902/publications.pdf

Version: 2024-02-01

44 546 12 22
papers citations h-index g-index

44 44 44 691 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Facile green synthesis of fluorescent carbon nanoparticles using spider silks. International Journal of Innovative Research in Physics, 2022, 3, .	0.2	О
2	Improved PCE of solution processed kesterite Ag2ZnSnS4 quantum dot photovoltaic cell. Materials Chemistry and Physics, 2022, 281, 125878.	4.0	6
3	In-situ synthesis of mixed-phase carbon material using simple pyrolysis method for high-performance supercapacitor. Diamond and Related Materials, 2022, 127, 109209.	3.9	4
4	A few layers of graphene sheets prepared by an electrochemical method enhance the performance of organic photovoltaic device. Materials Today: Proceedings, 2021, 39, 1941-1944.	1.8	5
5	Alternative approach for efficient hole transporting electrode by depositing MWCNT layer on CZTS-MWCNT material for perovskite solar cell application. Optical Materials, 2021, 111, 110612.	3.6	5
6	Facile synthesis of new hybrid electrode material based on activated carbon/multiwalled carbon nanotubes@ZnFe2O4 for supercapacitor applications. Inorganic Chemistry Communication, 2021, 123, 108332.	3.9	39
7	Applications of carbon nanotubes in different layers of P3HT: PCBM bulk heterojunction organic photovoltaic cells. Materials Today: Proceedings, 2021, 39, 1862-1865.	1.8	2
8	Study of electrical properties of a few layers of graphene sheets under Ultraviolet and Visible light irradation. International Journal of Innovative Research in Physics, 2021, 2, 8-14.	0.2	3
9	Graphene field-effect transistor using gated ferroelectric thin film. Solid State Communications, 2021, 340, 114533.	1.9	7
10	Effect of different aqueous electrolytes on electrochemical performance of activated carbon anchored by multiwalled carbon nanotubes for supercapacitor applications. AIP Conference Proceedings, 2020, , .	0.4	3
11	Enhanced stability of bulk heterojunction organic solar cells by application of few layers of electrochemically exfoliated graphene. Journal of Renewable and Sustainable Energy, 2020, 12, 054701.	2.0	5
12	Intermittent sulfurization—a method promoting Macro-Porous Cu-Poor Zn-Rich—kesterite CZTS as HTM for inverted perovskite solar cell application. Journal of Materials Science: Materials in Electronics, 2020, 31, 18427-18444.	2.2	6
13	Effect of Co Doping in Tuning the Band Gap of LaFeO ₃ . Integrated Ferroelectrics, 2020, 205, 61-65.	0.7	13
14	Investigation of improvement in stability and power conversion efficiency of organic solar cells fabricated by incorporating carbon nanostructures in device architecture. JPhys Materials, 2020, 3, 045004.	4.2	9
15	Performance of organic photovoltaic cells fabricated using reduced graphene oxide/PEDOT:PSS composites as transparent electrodes. AIP Conference Proceedings, 2019, , .	0.4	2
16	Investigation of wetting properties of few layers of graphene sheets prepared by electrochemical method. AIP Conference Proceedings, 2019, , .	0.4	4
17	Dielectric Behavior of PZT/Graphene Oxide Composites. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900108.	1.8	3
18	Conducting reduced graphene oxide film as transparent electrode. Thin Solid Films, 2019, 692, 137594.	1.8	10

#	Article	IF	Citations
19	Structural and optical study of CZTS-reduced graphene oxide composite towards photovoltaic device application. Materials Today: Proceedings, 2019, 17, 131-137.	1.8	o
20	Improved stability and performance of organic photovoltaic cells by application of carbon nanostructures and PEDOT:PSS composites as additional transparent electrodes. Solar Energy, 2019, 186, 146-155.	6.1	29
21	Investigation of electrical, mechanical, and thermal properties of functionalized multiwalled carbon nanotubesâ€reduced graphene Oxide/PMMA hybrid nanocomposites. Polymer Engineering and Science, 2019, 59, 1075-1083.	3.1	14
22	Enhancement of photocurrent in Cu2ZnSnS4 quantum dot-anchored multi-walled carbon nanotube for solar cell application. Journal of Materials Science, 2019, 54, 8542-8555.	3.7	13
23	RGO induced structural and microstructural properties of P3HT in the performance and stability of polymer solar cells. Materials Research Express, 2019, 6, 125338.	1.6	3
24	A facile method to synthesize CZTS quantum dots for solar cell applications. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 105, 19-24.	2.7	16
25	Mesoscopic investigation of the effect of MWCNT/rGO network on the performance of P3HT:PC60BM solar cells. Materials Chemistry and Physics, 2019, 226, 113-117.	4.0	11
26	Preparation of few layer graphene sheets (FLGS) prepared by an electrochemical method. IOP Conference Series: Materials Science and Engineering, 2018, 338, 012063.	0.6	7
27	Investigation of optical and electrical properties of MWCNT/rGO/poly(3-hexylthiophene) ternary composites. Journal of Materials Science, 2018, 53, 8151-8160.	3.7	8
28	Large scale synthesis of reduced graphene oxide using ferrocene and HNO3. Materials Letters, 2018, 211, 335-338.	2.6	10
29	Investigation of Electrical and Thermal Properties of Reduced Graphene Oxide–Multiwalled Carbon Nanotubes/PMMA Hybrid Nanocomposite. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700476.	1.8	2
30	Synthesis and characterizations of Cu2ZnSnS4 nanoparticles/carbon nanotube composite as an efficient absorber material for solar cell application. AIP Conference Proceedings, 2018, , .	0.4	3
31	Effect of ionic liquid functionalized carbon nanotubes on mechanical, thermal and electrical properties of carbon nanotubes-reduced graphene oxide/PMMA nanocomposites. Chemical Physics Letters, 2018, 706, 76-81.	2.6	11
32	Synthesis of CZTS QDs decorated reduced graphene oxide nanocomposite as possible absorber for solar cell. Materials Letters, 2018, 232, 232-236.	2.6	11
33	Preparation and characterization of PEDOT:PSS/reduced graphene oxide–carbon nanotubes hybrid composites for transparent electrode applications. Journal of Materials Science, 2017, 52, 5696-5707.	3.7	47
34	Structural investigation of the enhanced electrical, optical and electrochemical properties of MWCNT incorporated Poly [3-hexylthiophene-2,5-diyl] composites. Materials Chemistry and Physics, 2017, 199, 477-484.	4.0	11
35	An electrochemical method for the synthesis of few layer graphene sheets for high temperature applications. Chemical Communications, 2014, 50, 4613.	4.1	36
36	Instantaneous reduction of graphene oxide at room temperature. RSC Advances, 2013, 3, 12621.	3.6	34

#	Article	IF	CITATION
37	Electron field emission from sp 2-induced insulating to metallic behaviour of amorphous carbon (a-C) films. Bulletin of Materials Science, 2010, 33, 215-220.	1.7	2
38	Polymer confinement effects in aligned carbon nanotubes arrays. Physical Chemistry Chemical Physics, 2010, 12, 4407.	2.8	18
39	Excellent field emission from semialigned carbon nanofibers grown on cylindrical copper surface. Applied Physics Letters, 2009, 95, 083108.	3. 3	6
40	Synthesis of multi-wall carbon nanotubes by simple pyrolysis. Solid State Communications, 2008, 145, 143-148.	1.9	57
41	Carbon-Based Material for Low Temperature Detection., 2008,,.		O
42	A one-step technique to prepare aligned arrays of carbon nanotubes. Nanotechnology, 2008, 19, 155602.	2.6	46
43	Controllable resistance and temperature dependency of carbon nanotube bundles. Applied Physics Letters, 2008, 93, 063105.	3.3	14
44	Possible application of carbon nanotube bundles for low temperature sensing. Review of Scientific Instruments, 2008, 79, 053909.	1.3	11