
Joshua A Harrill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9248736/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neurobehavioral toxicology of pyrethroid insecticides in adult animals: A critical review. Neurotoxicology and Teratology, 2008, 30, 55-78.	1.2	255
2	The Next Generation Blueprint of Computational Toxicology at the U.S. Environmental Protection Agency. Toxicological Sciences, 2019, 169, 317-332.	1.4	225
3	In Vitro Assessment of Developmental Neurotoxicity: Use of Microelectrode Arrays to Measure Functional Changes in Neuronal Network Ontogeny1. Frontiers in Neuroengineering, 2011, 4, 1.	4.8	108
4	Use of high content image analysis to detect chemical-induced changes in synaptogenesis in vitro. Toxicology in Vitro, 2011, 25, 368-387.	1.1	98
5	Quantitative assessment of neurite outgrowth in human embryonic stem cell-derived hN2â,,¢ cells using automated high-content image analysis. NeuroToxicology, 2010, 31, 277-290.	1.4	96
6	High-Throughput Transcriptomics Platform for Screening Environmental Chemicals. Toxicological Sciences, 2021, 181, 68-89.	1.4	79
7	Bioactivity screening of environmental chemicals using imaging-based high-throughput phenotypic profiling. Toxicology and Applied Pharmacology, 2020, 389, 114876.	1.3	71
8	Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth. Toxicology and Applied Pharmacology, 2011, 256, 268-280.	1.3	70
9	Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice. Toxicology and Applied Pharmacology, 2013, 272, 503-518.	1.3	67
10	Comparison of chemical-induced changes in proliferation and apoptosis in human and mouse neuroprogenitor cells. NeuroToxicology, 2012, 33, 1499-1510.	1.4	65
11	Testing for developmental neurotoxicity using a battery of in vitro assays for key cellular events in neurodevelopment. Toxicology and Applied Pharmacology, 2018, 354, 24-39.	1.3	59
12	Considerations for strategic use of high-throughput transcriptomics chemical screening data in regulatory decisions. Current Opinion in Toxicology, 2019, 15, 64-75.	2.6	58
13	Use of high content image analyses to detect chemical-mediated effects on neurite sub-populations in primary rat cortical neurons. NeuroToxicology, 2013, 34, 61-73.	1.4	51
14	Progress towards an OECD reporting framework for transcriptomics and metabolomics in regulatory toxicology. Regulatory Toxicology and Pharmacology, 2021, 125, 105020.	1.3	46
15	Ontogeny of biochemical, morphological and functional parameters of synaptogenesis in primary cultures of rat hippocampal and cortical neurons. Molecular Brain, 2015, 8, 10.	1.3	44
16	Neurotrophic Effects of Leukemia Inhibitory Factor on Neural Cells Derived from Human Embryonic Stem Cells. Stem Cells, 2012, 30, 2387-2399.	1.4	36
17	Vision of a near future: Bridging the human health–environment divide. Toward an integrated strategy to understand mechanisms across species for chemical safety assessment. Toxicology in Vitro, 2020, 62, 104692.	1.1	33
18	Phenotypic Profiling of Reference Chemicals across Biologically Diverse Cell Types Using the Cell Painting Assay. SLAS Discovery, 2020, 25, 755-769.	1.4	33

Joshua A Harrill

#	Article	IF	CITATIONS
19	Lineageâ€dependent effects of aryl hydrocarbon receptor agonists contribute to liver tumorigenesis. Hepatology, 2015, 61, 548-560.	3.6	28
20	Quantitative Assessment of Neurite Outgrowth in PC12 Cells. Methods in Molecular Biology, 2011, 758, 331-348.	0.4	25
21	Aryl hydrocarbon receptor knockout rats are insensitive to the pathological effects of repeated oral exposure to 2,3,7,8â€tetrachlorodibenzoâ€ <i>p</i> â€dioxin. Journal of Applied Toxicology, 2016, 36, 802-814.	1.4	23
22	Integrating Data From <i>In Vitro</i> New Approach Methodologies for Developmental Neurotoxicity. Toxicological Sciences, 2022, 187, 62-79.	1.4	20
23	Transcriptional response of rat frontal cortex following acute In Vivo exposure to the pyrethroid insecticides permethrin and deltamethrin. BMC Genomics, 2008, 9, 546.	1.2	19
24	Immunological characterization of the aryl hydrocarbon receptor (AHR) knockout rat in the presence and absence of 2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD). Toxicology, 2016, 368-369, 172-182.	2.0	17
25	Comparison of Approaches for Determining Bioactivity Hits from High-Dimensional Profiling Data. SLAS Discovery, 2021, 26, 292-308.	1.4	14
26	Time and concentration dependent accumulation of [3H]-deltamethrin in Xenopus laevis oocytesâ~†. Toxicology Letters, 2005, 157, 79-88.	0.4	13
27	Media formulation influences chemical effects on neuronal growth and morphology. In Vitro Cellular and Developmental Biology - Animal, 2015, 51, 612-629.	0.7	12
28	Combining phenotypic profiling and targeted RNA-Seq reveals linkages between transcriptional perturbations and chemical effects on cell morphology: Retinoic acid as an example. Toxicology and Applied Pharmacology, 2022, 444, 116032.	1.3	8
29	Estimating Hepatotoxic Doses Using High-Content Imaging in Primary Hepatocytes. Toxicological Sciences, 2021, 183, 285-301.	1.4	5
30	Benchmark Dose Modeling Approaches for Volatile Organic Chemicals Using a Novel Air-Liquid Interface <i>In Vitro</i> Exposure System. Toxicological Sciences, 2022, 188, 88-107.	1.4	5
31	Human-Derived Neurons and Neural Progenitor Cells in High Content Imaging Applications. Methods in Molecular Biology, 2018, 1683, 305-338.	0.4	4
32	Comments on: Effect of prenatal exposure of deltamethrin on the ontogeny of xenobiotic metabolizing cytochrome P450s in the brain and liver of offsprings [Johri et al. Toxicol Appl Pharmacol. 214:279–289, 2006]. Toxicology and Applied Pharmacology, 2007, 218, 96-97.	1.3	2
33	Splice variant specific increase in Ca ²⁺ /calmodulinâ€dependent protein kinase 1â€gamma mRNA expression in response to acute pyrethroid exposure. Journal of Biochemical and Molecular Toxicology, 2010, 24, 174-186.	1.4	2
34	Optimization of Human Neural Progenitor Cells for an Imaging-Based High-Throughput Phenotypic Profiling Assay for Developmental Neurotoxicity Screening. Frontiers in Toxicology, 2021, 3, 803987.	1.6	1