A-M S Tremblay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/924866/publications.pdf

Version: 2024-02-01

70 papers

3,253 citations

30 h-index 56 g-index

70 all docs

70 docs citations

times ranked

70

1890 citing authors

#	Article	IF	CITATIONS
1	Fermi arcs versus hole pockets: Periodization of a cellular two-band model. Physical Review B, 2022, 105, .	3.2	1
2	Resilient Fermi Liquid and Strength of Correlations near an Antiferromagnetic Quantum Critical Point. Physical Review Letters, 2022, 128, 087001.	7.8	2
3	Non-Fermi liquid phase and linear-in-temperature scattering rate in overdoped two-dimensional Hubbard model. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115819119.	7.1	11
4	Disorder effects on hot spots in electron-doped cuprates. Physical Review B, 2022, 105, .	3.2	3
5	Information-theoretic measures of superconductivity in a two-dimensional doped Mott insulator. Proceedings of the National Academy of Sciences of the United States of America, 2021, $118, \ldots$	7.1	7
6	Oxygen hole content, charge-transfer gap, covalency, and cuprate superconductivity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	3
7	Oxygen hole content, charge-transfer gap, covalency, and cuprate superconductivity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
8	Interaction and temperature effects on the magneto-optical conductivity of Weyl liquids. Physical Review B, 2020, 102, .	3.2	2
9	Analysis of the magnetic and magnetocaloric properties of ALaFeMnO6 (A = Sr, Ba, and Ca) double perovskites. Journal of Applied Physics, 2020, 127, .	2.5	14
10	Entanglement and Classical Correlations at the Doping-Driven Mott Transition in the Two-Dimensional Hubbard Model. PRX Quantum, 2020, $1,\ldots$	9.2	9
11	Superfluid stiffness in cuprates: Effect of Mott transition and phase competition. Physical Review B, 2019, 100, .	3.2	14
12	Specific heat maximum as a signature of Mott physics in the two-dimensional Hubbard model. Physical Review B, 2019, 100, .	3.2	10
13	Charge fluctuations in lightly hole-doped cuprates: Effect of vertex corrections. Physical Review B, 2019, 99, .	3.2	16
14	Coexistence of superconductivity and antiferromagnetism in the Hubbard model for cuprates. Physical Review B, 2019, 99, .	3.2	31
15	Critical opalescence across the doping-driven Mott transition in optical lattices of ultracold atoms. Physical Review B, 2019, 99, . Electronic and magnetic properties of the double perovskites < mml:math	3.2	14
	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi> La </mml:mi> <mml:n< td=""><td>mn>2<td>nl:mn></td></td></mml:n<></mml:msub></mml:mrow>	mn>2 <td>nl:mn></td>	nl:mn>

and <mml:math
xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>LaA</mml:mi><mml:msub><mml:mi>MnFeO</mml:mi></mr 16

#	Article	IF	CITATIONS
19	Local Entanglement Entropy and Mutual Information across the Mott Transition in the Two-Dimensional Hubbard Model. Physical Review Letters, 2019, 122, 067203.	7.8	26
20	Intrinsic cluster-shaped density waves in cellular dynamical mean-field theory. Physical Review B, 2019, 100, .	3.2	8
21	Superconducting Symmetries of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><m< td=""><td>l:mn82<td>nm\tmn></td></td></m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	l:m n 82 <td>nm\tmn></td>	nm\tmn>
22	Bad metallic transport in a cold atom Fermi-Hubbard system. Science, 2019, 363, 379-382.	12.6	167
23	Pseudogap, van Hove singularity, maximum in entropy, and specific heat for hole-doped Mott insulators. Physical Review Research, 2019, 1 , .	3.6	14
24	Hall and Faraday effects in interacting multiband systems with arbitrary band topology and spin-orbit coupling. Physical Review B, 2018, 98, . Electronic and magnetic properties of the candidate magnetocaloric-material double perovskites	3.2	12
25	<pre><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>La</mml:mi><mml:n ,="" <mml:math="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>La</mml:mi><mml:n< pre=""></mml:n<></mml:msub></mml:mrow></mml:n></mml:msub></mml:mrow></mml:math></pre>	0.2	21
26	Physical Review B, 2018, 98, Subgap structures and pseudogap in cuprate superconductors: Role of density waves. Physical Review B, 2017, 95, .	3.2	11
27	Maximum entropy analytic continuation for frequency-dependent transport coefficients with nonpositive spectral weight. Physical Review B, 2017, 95, .	3.2	5
28	Signatures of the Mott transition in the antiferromagnetic state of the two-dimensional Hubbard model. Physical Review B, 2017, 95, .	3.2	46
29	Phenomenological theories of the low-temperature pseudogap: Hall number, specific heat, and Seebeck coefficient. Physical Review B, 2017, 96, .	3.2	26
30	Orbital effect of the magnetic field in dynamical mean-field theory. Physical Review B, 2017, 96, .	3.2	11
31	Effects of interaction strength, doping, and frustration on the antiferromagnetic phase of the two-dimensional Hubbard model. Physical Review B, 2017, 96, .	3.2	18
32	Mott transition and magnetism on the anisotropic triangular lattice. Physical Review B, 2016, 94, .	3.2	8
33	Algorithms for optimized maximum entropy and diagnostic tools for analytic continuation. Physical Review E, 2016, 94, 023303.	2.1	62
34	Correlation-Enhanced Odd-Parity Interorbital Singlet Pairing in the Iron-Pnictide Superconductor LiFeAs. Physical Review Letters, 2016, 117, 137001.	7.8	26
35	Antagonistic effects of nearest-neighbor repulsion on the superconducting pairing dynamics in the doped Mott insulator regime. Physical Review B, 2016, 94, .	3.2	21
36	Pseudogap and superconductivity in two-dimensional doped charge-transfer insulators. Physical Review B, 2016, 93, .	3.2	18

#	Article	IF	CITATIONS
37	An organizing principle for two-dimensional strongly correlated superconductivity. Scientific Reports, 2016, 6, 22715.	3.3	57
38	Maximum entropy analytic continuation for spectral functions with nonpositive spectral weight. Physical Review B, 2015, 92, .	3.2	20
39	Superconducting dome in doped quasi-two-dimensional organic Mott insulators: A paradigm for strongly correlated superconductivity. Physical Review B, 2015, 92, .	3.2	21
40	Impurity-induced magnetic moments on the graphene-lattice Hubbard model: An inhomogeneous cluster dynamical mean-field theory study. Physical Review B, 2015, 91, .	3.2	15
41	Phase diagram and Fermi liquid properties of the extended Hubbard model on the honeycomb lattice. Physical Review B, 2014, 89, .	3.2	41
42	Lazy skip-lists: An algorithm for fast hybridization-expansion quantum Monte Carlo. Physical Review B, 2014, 90, .	3.2	36
43	Ergodicity of the hybridization-expansion Monte Carlo algorithm for broken-symmetry states. Physical Review B, 2014, 89, .	3.2	20
44	Orbital magnetization of correlated electrons with arbitrary band topology. Physical Review B, 2014, 90, .	3.2	16
45	Entropy, frustration, and large thermopower of doped Mott insulators on the fcc lattice. Physical Review B, 2013, 87, .	3.2	27
46	Transport functions for hypercubic and Bethe lattices. Physical Review B, 2013, 88, .	3.2	17
47	Resilience of <a "="" href="mailto://www.w3.org/1998/Math/MathML">mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> d -wave superconductivity">mml:math>-wave superconductivity to nearest-neighbor repulsion. Physical Review B, 2013, 87, .	3.2	39
48	<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>c</mml:mi></mml:math> -axis resistivity, pseudogap, superconductivity, and Widom line in doped Mott insulators. Physical Review B, 2013, 87, .	3.2	44
49	Importance of subleading corrections for the Mott critical point. Physical Review B, 2012, 85, .	3.2	36
50	Breakdown of Fermi liquid behavior at the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mio><mml:mio><mml:mio>, wave quantum-critical point: The case of electron-doped cuprates. Physical Review B, 2012, 86, .</mml:mio></mml:mio></mml:mio></mml:math>	· < 3.2 · <mm:l:mi></mm:l:mi>	.Ï€₹/mml:mi>
51	Pseudogap temperature as a Widom line in doped Mott insulators. Scientific Reports, 2012, 2, 547.	3.3	68
52	Strong Coupling Superconductivity, Pseudogap, and Mott Transition. Physical Review Letters, 2012, 108, 216401.	7.8	127
53	Mott physics and first-order transition between two metals in the normal-state phase diagram of the two-dimensional Hubbard model. Physical Review B, 2011, 84, .	3.2	72
54	Optical and dc conductivity of the two-dimensional Hubbard model in the pseudogap regime and across the antiferromagnetic quantum critical point including vertex corrections. Physical Review B, 2011, 84, .	3.2	57

#	Article	IF	CITATIONS
55	Finite Doping Signatures of the Mott Transition in the Two-Dimensional Hubbard Model. Physical Review Letters, 2010, 104, 226402.	7.8	86
56	Dynamical electronic nematicity from Mott physics. Physical Review B, 2010, 82, .	3.2	51
57	Pairing dynamics in strongly correlated superconductivity. Physical Review B, 2009, 80, .	3.2	57
58	First-order Mott transition at zero temperature in two dimensions: Variational plaquette study. Europhysics Letters, 2009, 85, 17002.	2.0	70
59	Anomalous superconductivity and its competition with antiferromagnetism in doped Mott insulators. Physical Review B, 2008, 77, .	3.2	153
60	Conditions for magnetically induced singlet <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>d</mml:mi></mml:math> -wave superconductivity on the square lattice. Physical Review B, 2008, 77, .	3.2	25
61	Pseudogap and high-temperature superconductivity from weak to strong coupling. Towards a quantitative theory (Review Article). Low Temperature Physics, 2006, 32, 424-451.	0.6	144
62	Mott Transition, Antiferromagnetism, andd-Wave Superconductivity in Two-Dimensional Organic Conductors. Physical Review Letters, 2006, 97, 046402.	7.8	192
63	Pseudogap induced by short-range spin correlations in a doped Mott insulator. Physical Review B, 2006, 73, .	3.2	222
64	Competition between Antiferromagnetism and Superconductivity in High-TcCuprates. Physical Review Letters, 2005, 94, 156404.	7.8	194
65	Hot Spots and Pseudogaps for Hole- and Electron-Doped High-Temperature Superconductors. Physical Review Letters, 2004, 92, 126401.	7.8	195
66	Pseudogap and Spin Fluctuations in the Normal State of the Electron-Doped Cuprates. Physical Review Letters, 2004, 93, 147004.	7.8	105
67	Antiferromagnetic fluctuations andd-wave superconductivity in electron-doped high-temperature superconductors. Physical Review B, 2003, 68, .	3.2	66
68	Pairing fluctuations and pseudogaps in the attractive Hubbard model. Physical Review B, 2001, 64, .	3.2	54
69	Many-body theory versus simulations for the pseudogap in the Hubbard model. Physical Review B, 2000, 61, 7887-7892.	3.2	64
70	Destruction of Fermi-liquid quasiparticles in two dimensions by critical fluctuations. Europhysics Letters, 1996, 33, 159-164.	2.0	79