Motohiro Tani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9248358/publications.pdf Version: 2024-02-01

Μοτομιρο ΤλΝΙ

#	Article	IF	CITATIONS
1	Lack of sphingosine 1-phosphate-degrading enzymes in erythrocytes. Biochemical and Biophysical Research Communications, 2007, 357, 212-217.	1.0	166
2	The Extended Family of Neutral Sphingomyelinases. Biochemistry, 2006, 45, 11247-11256.	1.2	156
3	Ceramide/sphingosine/sphingosine 1-phosphate metabolism on the cell surface and in the extracellular space. Cellular Signalling, 2007, 19, 229-237.	1.7	140
4	Mechanisms of sphingosine and sphingosine 1-phosphate generation in human platelets. Journal of Lipid Research, 2005, 46, 2458-2467.	2.0	114
5	Purification, Characterization, Molecular Cloning, and Subcellular Distribution of Neutral Ceramidase of Rat Kidney. Journal of Biological Chemistry, 2001, 276, 26249-26259.	1.6	107
6	Molecular Cloning of the Full-length cDNA Encoding Mouse Neutral Ceramidase. Journal of Biological Chemistry, 2000, 275, 11229-11234.	1.6	102
7	Purification and Characterization of a Novel Ceramidase fromPseudomonas aeruginosa. Journal of Biological Chemistry, 1998, 273, 14368-14373.	1.6	101
8	Purification and Characterization of a Neutral Ceramidase from Mouse Liver. Journal of Biological Chemistry, 2000, 275, 3462-3468.	1.6	92
9	Klotho-related Protein Is a Novel Cytosolic Neutral β-Clycosylceramidase. Journal of Biological Chemistry, 2007, 282, 30889-30900.	1.6	84
10	Neutral Sphingomyelinase 2 Is Palmitoylated on Multiple Cysteine Residues. Journal of Biological Chemistry, 2007, 282, 10047-10056.	1.6	63
11	Subcellular localization of human neutral ceramidase expressed in HEK293 cells. Biochemical and Biophysical Research Communications, 2005, 331, 37-42.	1.0	58
12	Analysis of membrane topology of neutral sphingomyelinase 2. FEBS Letters, 2007, 581, 1323-1328.	1.3	57
13	O-Glycosylation of Mucin-like Domain Retains the Neutral Ceramidase on the Plasma Membranes as a Type II Integral Membrane Protein. Journal of Biological Chemistry, 2003, 278, 10523-10530.	1.6	56
14	Neutral/Alkaline and Acid Ceramidase Activities Are Actively Released by Murine Endothelial Cells. Biochemical and Biophysical Research Communications, 2000, 275, 746-751.	1.0	50
15	Molecular Cloning and Characterization of a Secretory Neutral Ceramidase of Drosophila melanogaster. Journal of Biochemistry, 2002, 132, 229-236.	0.9	49
16	Mannosylinositol phosphorylceramide is a major sphingolipid component and is required for proper localization of plasma-membrane proteins in <i>Schizosaccharomyces pombe</i> . Journal of Cell Science, 2010, 123, 1578-1587.	1.2	47
17	Molecular Cloning and Functional Analysis of Zebrafish Neutral Ceramidase. Journal of Biological Chemistry, 2004, 279, 44012-44022.	1.6	46
18	Involvement of Neutral Ceramidase in Ceramide Metabolism at the Plasma Membrane and in Extracellular Milieu. Journal of Biological Chemistry, 2005, 280, 36592-36600.	1.6	46

Μοτομικό Τανι

#	Article	IF	CITATIONS
19	Specific and Sensitive Assay for Alkaline and Neutral Ceramidases Involving C12-NBD-Ceramide. Journal of Biochemistry, 1999, 125, 746-749.	0.9	41
20	Enzymatic Synthesis of ω-Amino-Ceramide: Preparation of a Sensitive Fluorescent Substrate for Ceramidase. Analytical Biochemistry, 1998, 263, 183-188.	1.1	40
21	Phospholipid methylation controls Atg32â€mediated mitophagy and Atg8 recycling. EMBO Journal, 2015, 34, 2703-2719.	3.5	39
22	<i>FMP30</i> is required for the maintenance of a normal cardiolipin level and mitochondrial morphology in the absence of mitochondrial phosphatidylethanolamine synthesis. Molecular Microbiology, 2011, 80, 248-265.	1.2	34
23	Mechanistic Insights into the Hydrolysis and Synthesis of Ceramide by Neutral Ceramidase. Journal of Biological Chemistry, 2009, 284, 9566-9577.	1.6	30
24	New insight into the structure, reaction mechanism, and biological functions of neutral ceramidase. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 682-691.	1.2	30
25	Sphingomyelin synthase 2 is palmitoylated at the COOH-terminal tail, which is involved in its localization in plasma membranes. Biochemical and Biophysical Research Communications, 2009, 381, 328-332.	1.0	28
26	Rescue of cell growth by sphingosine with disruption of lipid microdomain formation in Saccharomyces cerevisiae deficient in sphingolipid biosynthesis. Biochemical Journal, 2006, 394, 237-242.	1.7	27
27	Defect of synthesis of very long-chain fatty acids confers resistance to growth inhibition by inositol phosphorylceramide synthase repression in yeast Saccharomyces cerevisiae. Journal of Biochemistry, 2010, 148, 565-571.	0.9	27
28	Mannosylinositol phosphorylceramides and ergosterol coodinately maintain cell wall integrity in the yeast <i>Saccharomyces cerevisiae</i> . FEBS Journal, 2018, 285, 2405-2427.	2.2	26
29	Requirement of a specific group of sphingolipidâ€metabolizing enzyme for growth of yeast <i>Saccharomyces cerevisiae</i> under impaired metabolism of glycerophospholipids. Molecular Microbiology, 2010, 78, 395-413.	1.2	24
30	Synthesis of mannosylinositol phosphorylceramides is involved in maintenance of cell integrity of yeast <scp><i>S</i></scp> <i>accharomyces cerevisiae</i> . Molecular Microbiology, 2015, 95, 706-722.	1.2	24
31	Involvement of Sac1 phosphoinositide phosphatase in the metabolism of phosphatidylserine in the yeast <i>Saccharomyces cerevisiae</i> . Yeast, 2014, 31, 145-158.	0.8	23
32	Loss of hydroxyl groups from the ceramide moiety can modify the lateral diffusion of membrane proteins in S. cerevisiae. Journal of Lipid Research, 2014, 55, 1343-1356.	2.0	23
33	A neutral ceramidase homologue from Dictyostelium discoideum exhibits an acidic pH optimum. Biochemical Journal, 2003, 376, 473-479.	1.7	22
34	Protective role of the HOG pathway against the growth defect caused by impaired biosynthesis of complex sphingolipids in yeast <i>Saccharomyces cerevisiae</i> . Molecular Microbiology, 2018, 107, 363-386.	1.2	21
35	Involvement of complex sphingolipids and phosphatidylserine in endosomal trafficking in yeast <i><scp>S</scp>accharomyces cerevisiae</i> . Molecular Microbiology, 2012, 86, 1262-1280.	1.2	20
36	Ergosteryl-β-glucosidase (Egh1) involved in sterylglucoside catabolism and vacuole formation in <i>Saccharomyces cerevisiae</i> . Glycobiology, 2015, 25, 1079-1089.	1.3	20

Μοτομικό Τανι

#	Article	IF	CITATIONS
37	Hydroxylation state of fatty acid and long-chain base moieties of sphingolipid determine the sensitivity to growth inhibition due to AUR1 repression in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 2012, 417, 673-678.	1.0	19
38	Alteration of complex sphingolipid composition and its physiological significance in yeast Saccharomyces cerevisiae lacking vacuolar ATPase. Microbiology (United Kingdom), 2015, 161, 2369-2383.	0.7	19
39	Large-scale purification and characterization of recombinant Pseudomonas ceramidase: regulation by calcium. Journal of Lipid Research, 2007, 48, 600-608.	2.0	18
40	Preparation of Fluorescence-Labeled GM1 and Sphingomyelin by the Reverse Hydrolysis Reaction of Sphingolipid Ceramide N-Deacylase as Substrates for Assay of Sphingolipid-Degrading Enzymes and for Detection of Sphingolipid-Binding Proteins. Journal of Biochemistry, 1999, 126, 604-611.	0.9	17
41	Change in activity of serine palmitoyltransferase affects sensitivity to syringomycin E in yeast <i>Saccharomyces cerevisiae</i> . FEMS Microbiology Letters, 2014, 358, 64-71.	0.7	15
42	Protection mechanisms against aberrant metabolism of sphingolipids in budding yeast. Current Genetics, 2018, 64, 1021-1028.	0.8	15
43	Structure–Function Relationship of Complex Sphingolipids in Yeast. Trends in Glycoscience and Glycotechnology, 2016, 28, E109-E116.	0.0	14
44	Overexpression of PDR16 confers resistance to complex sphingolipid biosynthesis inhibitor aureobasidin A in yeast Saccharomyces cerevisiae. FEMS Microbiology Letters, 2018, 365, .	0.7	13
45	[52] Enzymatic synthesis of [14C]ceramide, [14C]glycosphingolipids, and ω-aminoceramide. Methods in Enzymology, 2000, 311, 682-689.	0.4	12
46	C18:3-GM1a induces apoptosis in Neuro2a cells: enzymatic remodeling of fatty acyl chains of glycosphingolipids. Journal of Lipid Research, 2005, 46, 1103-1112.	2.0	11
47	Yeast lacking the amphiphysin family protein Rvs167 is sensitive to disruptions in sphingolipid levels. FEBS Journal, 2016, 283, 2911-2928.	2.2	11
48	Proper regulation of inositolphosphorylceramide levels is required for acquirement of low pH resistance in budding yeast. Scientific Reports, 2020, 10, 10792.	1.6	10
49	Mitochondrial reactive oxygen speciesâ€mediated cytotoxicity of intracellularly accumulated dihydrosphingosine in the yeastSaccharomycesÂcerevisiae. FEBS Journal, 2020, 287, 3427-3448.	2.2	9
50	Conserved Amino Acid Residues in the COOH-terminal Tail Are Indispensable for the Correct Folding and Localization and Enzyme Activity of Neutral Ceramidase. Journal of Biological Chemistry, 2004, 279, 29351-29358.	1.6	8
51	COX assembly factor ccdc56 regulates mitochondrial morphology by affecting mitochondrial recruitment of Drp1. FEBS Letters, 2015, 589, 3126-3132.	1.3	8
52	Regulation of sphingolipid biosynthesis in the endoplasmic reticulum via signals from the plasma membrane in budding yeast. FEBS Journal, 2022, 289, 457-472.	2.2	8
53	Expression of budding yeast IPT1 produces mannosyldiinositol phosphorylceramide in fission yeast and inhibits cell growth. Microbiology (United Kingdom), 2012, 158, 1219-1228.	0.7	6
54	Molecular Evolution of Neutral Ceramidase: From Bacteria to Mammals. Molecular Biology Intelligence Unit, 2002, , 41-48.	0.2	6

Μοτομικό Τανι

#	Article	IF	CITATIONS
55	Crosstalk between protein kinase A and the HOG pathway under impaired biosynthesis of complex sphingolipids in budding yeast. FEBS Journal, 2022, 289, 766-786.	2.2	5
56	VID22 is required for transcriptional activation of the PSD2 gene in the yeast Saccharomyces cerevisiae. Biochemical Journal, 2015, 472, 319-328.	1.7	3
57	The Mucin Box and Signal/Anchor Sequence of Rat Neutral Ceramidase Recruit Bacterial Sphingomyelinase to the Plasma Membrane. Bioscience, Biotechnology and Biochemistry, 2011, 75, 987-990.	0.6	2
58	ROS-mediated synthetic growth defect caused by impaired metabolism of sphingolipids and phosphatidylserine in budding yeast. Bioscience, Biotechnology and Biochemistry, 2020, 84, 2529-2532.	0.6	2
59	Identification of <i>sur2</i> mutation affecting the lifespan of fission yeast. FEMS Microbiology Letters, 2021, 368, .	0.7	2
60	Structure–Function Relationship of Complex Sphingolipids in Yeast. Trends in Glycoscience and Glycotechnology, 2016, 28, J107-J114.	0.0	0
61	Neutral Ceramidase as an Integral Modulator for the Generation of S1P and S1P-Mediated Signaling. , 2006, , 183-196.		0
62	Neutral Ceramidase. , 2016, , 1-8.		0
63	Neutral Ceramidase. , 2018, , 3450-3457.		0
64	Involvement of the mitochondrial retrograde pathway in dihydrosphingosine-induced cytotoxicity in budding yeast. Biochemical and Biophysical Research Communications, 2022, 605, 63-69.	1.0	0