List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9248214/publications.pdf Version: 2024-02-01

WEN SUN

#	Article	IF	CITATIONS
1	Recent Development of Chemosensors Based on Cyanine Platforms. Chemical Reviews, 2016, 116, 7768-7817.	23.0	825
2	NIR Lightâ€Driving Barrierâ€Free Group Rotation in Nanoparticles with an 88.3% Photothermal Conversion Efficiency for Photothermal Therapy. Advanced Materials, 2020, 32, e1907855.	11.1	422
3	Carbon Dots for In Vivo Bioimaging and Theranostics. Small, 2019, 15, e1805087.	5.2	337
4	A two-photon fluorescent probe with near-infrared emission for hydrogen sulfide imaging in biosystems. Chemical Communications, 2013, 49, 3890.	2.2	295
5	Superoxide Radical Photogenerator with Amplification Effect: Surmounting the Achilles' Heels of Photodynamic Oncotherapy. Journal of the American Chemical Society, 2019, 141, 2695-2702.	6.6	238
6	An Amphiphilic Ruthenium Polymetallodrug for Combined Photodynamic Therapy and Photochemotherapy In Vivo. Advanced Materials, 2017, 29, 1603702.	11.1	218
7	An ICT-based ratiometric probe for hydrazine and its application in live cells. Chemical Communications, 2012, 48, 8117.	2.2	206
8	A Ratiometric Near-Infrared Fluorescent Probe for Hydrazine and Its <i>in Vivo</i> Applications. Organic Letters, 2013, 15, 4022-4025.	2.4	204
9	A near-infrared fluorescent probe for selective detection of HClO based on Se-sensitized aggregation of heptamethine cyanine dye. Chemical Communications, 2014, 50, 1018-1020.	2.2	202
10	Activity-Based Sensing and Theranostic Probes Based on Photoinduced Electron Transfer. Accounts of Chemical Research, 2019, 52, 2818-2831.	7.6	202
11	Aminopeptidase N Activatable Fluorescent Probe for Tracking Metastatic Cancer and Image-Guided Surgery via <i>in Situ</i> Spraying. Journal of the American Chemical Society, 2020, 142, 6381-6389.	6.6	187
12	Janus Nanobullets Combine Photodynamic Therapy and Magnetic Hyperthermia to Potentiate Synergetic Antiâ€Metastatic Immunotherapy. Advanced Science, 2019, 6, 1901690.	5.6	169
13	Oxygen-Dependent Regulation of Excited-State Deactivation Process of Rational Photosensitizer for Smart Phototherapy. Journal of the American Chemical Society, 2020, 142, 1510-1517.	6.6	167
14	A highly specific BODIPY-based probe localized in mitochondria for HClO imaging. Analyst, The, 2013, 138, 6091.	1.7	164
15	A Fluorescent Ratiometric Chemodosimeter for Cu ²⁺ Based on TBET and Its Application in Living Cells. Organic Letters, 2013, 15, 492-495.	2.4	154
16	Hypoxia-activated NIR photosensitizer anchoring in the mitochondria for photodynamic therapy. Chemical Science, 2019, 10, 10586-10594.	3.7	151
17	Catalase-based liposomal for reversing immunosuppressive tumor microenvironment and enhanced cancer chemo-photodynamic therapy. Biomaterials, 2020, 233, 119755.	5.7	139
18	Boron Dipyrromethene Nanoâ€Photosensitizers for Anticancer Phototherapies. Small, 2019, 15, e1804927.	5.2	135

#	Article	IF	CITATIONS
19	A fluorescent probe for site I binding and sensitive discrimination of HSA from BSA. Chemical Communications, 2014, 50, 9573-9576.	2.2	126
20	A minireview of viscosity-sensitive fluorescent probes: design and biological applications. Journal of Materials Chemistry B, 2020, 8, 9642-9651.	2.9	117
21	Enhanced photodynamic therapy for overcoming tumor hypoxia: From microenvironment regulation to photosensitizer innovation. Coordination Chemistry Reviews, 2021, 427, 213604.	9.5	104
22	Biodegradable Drug-Loaded Hydroxyapatite Nanotherapeutic Agent for Targeted Drug Release in Tumors. ACS Applied Materials & Interfaces, 2018, 10, 7832-7840.	4.0	99
23	An APN-activated NIR photosensitizer for cancer photodynamic therapy and fluorescence imaging. Biomaterials, 2020, 253, 120089.	5.7	99
24	<i>In situ</i> imaging of aminopeptidase N activity in hepatocellular carcinoma: a migration model for tumour using an activatable two-photon NIR fluorescent probe. Chemical Science, 2019, 10, 1619-1625.	3.7	97
25	Fighting against Drugâ€Resistant Tumors using a Dualâ€Responsive Pt(IV)/Ru(II) Bimetallic Polymer. Advanced Materials, 2020, 32, e2004766.	11.1	89
26	Rutheniumâ€Containing Block Copolymer Assemblies:ÂRedâ€Lightâ€Responsive Metallopolymers with Tunable Nanostructures for Enhanced Cellular Uptake and Anticancer Phototherapy. Advanced Healthcare Materials, 2016, 5, 467-473.	3.9	87
27	Invisible Inks for Secrecy and Anticounterfeiting: From Single to Double-encryption by Hydrochromic Molecules. ACS Applied Materials & amp; Interfaces, 2020, 12, 8952-8960.	4.0	87
28	Redâ€Lightâ€Controlled Release of Drug–Ru Complex Conjugates from Metallopolymer Micelles for Phototherapy in Hypoxic Tumor Environments. Advanced Functional Materials, 2018, 28, 1804227.	7.8	82
29	An Approach to Developing Cyanines with Simultaneous Intersystem Crossing Enhancement and Excited-State Lifetime Elongation for Photodynamic Antitumor Metastasis. Journal of the American Chemical Society, 2021, 143, 12345-12354.	6.6	80
30	Development of a novel anti-tumor theranostic platform: a near-infrared molecular upconversion sensitizer for deep-seated cancer photodynamic therapy. Chemical Science, 2019, 10, 10106-10112.	3.7	79
31	A novel Mn–Cu bimetallic complex for enhanced chemodynamic therapy with simultaneous glutathione depletion. Chemical Communications, 2019, 55, 12956-12959.	2.2	75
32	Red-light-triggered self-destructive mesoporous silica nanoparticles for cascade-amplifying chemo-photodynamic therapy favoring antitumor immune responses. Biomaterials, 2022, 281, 121368.	5.7	75
33	Upconvertingâ€Nanoparticleâ€Assisted Photochemistry Induced by Lowâ€Intensity Nearâ€Infrared Light: How Low Can We Go?. Chemistry - A European Journal, 2015, 21, 9165-9170.	1.7	74
34	An estrogen receptor targeted ruthenium complex as a two-photon photodynamic therapy agent for breast cancer cells. Chemical Communications, 2018, 54, 7038-7041.	2.2	74
35	ER-Targeting Cyanine Dye as an NIR Photoinducer to Efficiently Trigger Photoimmunogenic Cancer Cell Death. Journal of the American Chemical Society, 2022, 144, 3477-3486.	6.6	73
36	Cancer immunogenic cell death via photo-pyroptosis with light-sensitive Indoleamine 2,3-dioxygenase inhibitor conjugate. Biomaterials, 2021, 278, 121167.	5.7	69

#	Article	IF	CITATIONS
37	Mitochondria-Anchored Colorimetric and Ratiometric Fluorescent Chemosensor for Visualizing Cysteine/Homocysteine in Living Cells and <i>Daphnia magna</i> Model. Analytical Chemistry, 2019, 91, 12531-12537.	3.2	66
38	Construction of Longâ€Wavelength Fluorescein Analogues and Their Application as Fluorescent Probes. Chemistry - A European Journal, 2013, 19, 6538-6545.	1.7	65
39	Aminopeptidaseâ€Nâ€activated Theranostic Prodrug for NIR Tracking of Local Tumor Chemotherapy. Advanced Functional Materials, 2018, 28, 1805128.	7.8	65
40	Strong π–π Stacking Stabilized Nanophotosensitizers: Improving Tumor Retention for Enhanced Therapy for Large Tumors in Mice. Advanced Materials, 2022, 34, e2106797.	11,1	64
41	Photoactivation of Anticancer Ru Complexes in Deep Tissue: How Deep Can We Go?. Chemistry - A European Journal, 2017, 23, 10832-10837.	1.7	63
42	Reconfiguring surface functions using visible-light-controlled metal-ligand coordination. Nature Communications, 2018, 9, 3842.	5.8	59
43	Oligo Hyaluronanâ€Coated Silica/Hydroxyapatite Degradable Nanoparticles for Targeted Cancer Treatment. Advanced Science, 2019, 6, 1900716.	5.6	51
44	A color turn-on fluorescent probe for real-time detection of hydrogen sulfide and identification of food spoilage. Chemical Communications, 2021, 57, 5012-5015.	2.2	51
45	Smart J-aggregate of cyanine photosensitizer with the ability to target tumor and enhance photodynamic therapy efficacy. Biomaterials, 2021, 269, 120532.	5.7	50
46	Protein nanoparticles containing Cu(II) and DOX for efficient chemodynamic therapy via self-generation of H2O2. Chinese Chemical Letters, 2020, 31, 3127-3130.	4.8	49
47	Single-Molecule Förster Resonance Energy Transfer-Based Photosensitizer for Synergistic Photodynamic/Photothermal Therapy. ACS Central Science, 2021, 7, 327-334.	5.3	49
48	Biomimetic co-assembled nanodrug of doxorubicin and berberine suppresses chemotherapy-exacerbated breast cancer metastasis. Biomaterials, 2021, 271, 120716.	5.7	49
49	Synergistic Anticancer Therapy by Ovalbumin Encapsulationâ€Enabled Tandem Reactive Oxygen Species Generation. Angewandte Chemie - International Edition, 2020, 59, 20008-20016.	7.2	48
50	Janus nanocarrier-based co-delivery of doxorubicin and berberine weakens chemotherapy-exacerbated hepatocellular carcinoma recurrence. Acta Biomaterialia, 2019, 100, 352-364.	4.1	44
51	Red-Light-Responsive Ru Complex Photosensitizer for Lysosome Localization Photodynamic Therapy. ACS Applied Materials & Interfaces, 2021, 13, 19572-19580.	4.0	44
52	The Self-Assembly of a Cyclometalated Palladium Photosensitizer into Protein-Stabilized Nanorods Triggers Drug Uptake In Vitro and In Vivo. Journal of the American Chemical Society, 2020, 142, 10383-10399.	6.6	43
53	NIR photosensitizers activated by γ-glutamyl transpeptidase for precise tumor fluorescence imaging and photodynamic therapy. Science China Chemistry, 2021, 64, 808-816.	4.2	43
54	A Versatile and Robust Platform for the Scalable Manufacture of Biomimetic Nanovaccines. Advanced Science, 2021, 8, 2002020.	5.6	43

#	Article	IF	CITATIONS
55	Coordination and Redox Dualâ€Responsive Mesoporous Organosilica Nanoparticles Amplify Immunogenic Cell Death for Cancer Chemoimmunotherapy. Small, 2021, 17, e2100006.	5.2	40
56	A nitroxyl-responsive near-infrared fluorescent chemosensor for visualizing H ₂ S/NO crosstalk in biological systems. Chemical Communications, 2019, 55, 8583-8586.	2.2	37
57	Inducing molecular isomerization assisted by water. Communications Chemistry, 2019, 2, .	2.0	35
58	The nature of the different environmental sensitivity of symmetrical and unsymmetrical cyanine dyes: an experimental and theoretical study. Physical Chemistry Chemical Physics, 2012, 14, 13702.	1.3	34
59	<i>In Vivo</i> Coinstantaneous Identification of Hepatocellular Carcinoma Circulating Tumor Cells by Dual-Targeting Magnetic-Fluorescent Nanobeads. Nano Letters, 2021, 21, 634-641.	4.5	34
60	Radical induced quartet photosensitizers with high 1O2 production for in vivo cancer photodynamic therapy. Science China Chemistry, 2021, 64, 488-498.	4.2	34
61	Simultaneous visualization of cysteine/homocysteine and glutathione in living cells and Daphnia magna via dual-signaling fluorescent chemosensor. Dyes and Pigments, 2019, 168, 189-196.	2.0	33
62	An Organic Nanotherapeutic Agent Selfâ€Assembled from Cyanine and Cu (II) for Combined Photothermal and Chemodynamic Therapy. Advanced Healthcare Materials, 2021, 10, e2101008.	3.9	31
63	Anticancer drug delivery systems based on inorganic nanocarriers with fluorescent tracers. AICHE Journal, 2018, 64, 835-859.	1.8	28
64	Photoresponsive metallopolymer nanoparticles for cancer theranostics. Biomaterials, 2021, 275, 120915.	5.7	28
65	Highly Inoxidizable Heptamethine Cyanine–Glucose Oxidase Conjugate Nanoagent for Combination of Enhanced Photothermal Therapy and Tumor Starvation. Advanced Functional Materials, 2022, 32, .	7.8	28
66	A Glutathione Activatable Photosensitizer for Combined Photodynamic and Gas Therapy under Red Light Irradiation. Advanced Healthcare Materials, 2022, 11, e2102017.	3.9	27
67	Accelerated antibacterial red-carbon dots with photodynamic therapy against multidrug-resistant Acinetobacter baumannii. Science China Materials, 2022, 65, 845-854.	3.5	24
68	A Sequential Dualâ€Model Strategy Based on Photoactivatable Metallopolymer for Onâ€Demand Release of Photosensitizers and Anticancer Drugs. Advanced Science, 2021, 8, e2103334.	5.6	24
69	Mechanism and Nature of the Different Viscosity Sensitivities of Hemicyanine Dyes with Various Heterocycles. ChemPhysChem, 2013, 14, 1601-1608.	1.0	23
70	A glutathione activatable pro-drug-photosensitizer for combined chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2022, 33, 4583-4586.	4.8	23
71	Reversing Multidrug Resistance by Inducing Mitochondrial Dysfunction for Enhanced Chemo-Photodynamic Therapy in Tumor. ACS Applied Materials & Interfaces, 2021, 13, 45259-45268.	4.0	22
72	Lighting-Up Tumor for Assisting Resection via Spraying NIR Fluorescent Probe of Î ³ -Glutamyltranspeptidas. Frontiers in Chemistry, 2018, 6, 485.	1.8	21

#	Article	IF	CITATIONS
73	Lysozyme-targeted ratiometric fluorescent probe for SO2 in living cells. Dyes and Pigments, 2020, 180, 108440.	2.0	20
74	Photoresponsive ruthenium-containing polymers: potential polymeric metallodrugs for anticancer phototherapy. Dalton Transactions, 2018, 47, 283-286.	1.6	19
75	Thiol-activated fluorescent probe for sensitive detection and imaging of proteins. Sensors and Actuators B: Chemical, 2019, 287, 118-123.	4.0	19
76	Sequential Enzyme Activation of a "Proâ€Staramineâ€â€Based Nanomedicine to Target Tumor Mitochondria. Advanced Functional Materials, 2020, 30, 1904697.	7.8	19
77	A photosensitizer-inhibitor conjugate for photodynamic therapy with simultaneous inhibition of treatment escape pathways. Biomaterials, 2020, 257, 120262.	5.7	19
78	New Cy5 photosensitizers for cancer phototherapy: a low singlet–triplet gap provides high quantum yield of singlet oxygen. Chemical Science, 2021, 12, 13809-13816.	3.7	19
79	NIR-excited superoxide radical procreators to eradicate tumors by targeting the lyso-membrane. Journal of Materials Chemistry B, 2019, 7, 4440-4450.	2.9	18
80	H-Aggregates of Prodrug-Hemicyanine Conjugate for Enhanced Photothermal Therapy and Sequential Hypoxia-Activated Chemotherapy. , 2022, 4, 724-732.		18
81	Hypoxia-activatable nano-prodrug for fluorescently tracking drug release in mice. Science China Chemistry, 2021, 64, 499-508.	4.2	17
82	"Internal and External Combined―Nonradiative Decay-Based Nanoagents for Photoacoustic Image-Guided Highly Efficient Photothermal Therapy. ACS Applied Materials & Interfaces, 2021, 13, 46353-46360.	4.0	16
83	Photocleavable core cross-linked polymeric micelles of polypept(o)ides and ruthenium(<scp>ii</scp>) complexes. Journal of Materials Chemistry B, 2021, 9, 8211-8223.	2.9	14
84	Ratiometric real-time monitoring of hydroxyapatite–doxorubicin nanotheranostic agents for on-demand tumor targeted chemotherapy. Materials Chemistry Frontiers, 2018, 2, 1791-1798.	3.2	13
85	Intramolecular Copperâ€Containing Hyperbranched Polytriazole Assemblies for Labelâ€Free Cellular Bioimaging and Redoxâ€Triggered Copper Complex Delivery. Macromolecular Rapid Communications, 2018, 39, e1800171.	2.0	13
86	A chemical biology toolbox to overcome the hypoxic tumor microenvironment for photodynamic therapy: a review. Biomaterials Science, 2022, 10, 4681-4693.	2.6	13
87	Photodynamic inheritance from methylene blue to carbon dots against reduction, aggregation, and DNA interference. Science China Materials, 2021, 64, 2325-2336.	3.5	12
88	The mechanism of different sensitivity of meso-substituted and unsubstituted cyanine dyes in rotation-restricted environments for biomedical imaging applications. RSC Advances, 2014, 4, 13385.	1.7	11
89	Red Light-Triggered Polyethylene Glycol Deshielding from Photolabile Cyanine-Modified Mesoporous Silica Nanoparticles for On-Demand Drug Release. ACS Applied Bio Materials, 2020, 3, 8084-8093.	2.3	11
90	A Novel Photosensitizer for Lipid Droplet–Location Photodynamic Therapy. Frontiers in Chemistry, 2021, 9, 701771.	1.8	10

#	Article	IF	CITATIONS
91	A sulfur-substituted hemicyanine for cancer photothermal therapy without influence of intracellular viscosity. Science China Chemistry, 2022, 65, 821-828.	4.2	10
92	Nanostructured polymer assemblies stabilize photoactivatable anticancer ruthenium complexes under physiological conditions. Journal of Inorganic Biochemistry, 2020, 207, 111052.	1.5	9
93	Redâ€Lightâ€Responsive Metallopolymer Nanocarriers with Conjugated and Encapsulated Drugs for Phototherapy Against Multidrugâ€Resistant Tumors. Small, 2022, 18, .	5.2	9
94	The ratiometric dual-fluorescence of near infrared absorbing aminocyanine dyes: A mechanistic study. Dyes and Pigments, 2017, 141, 379-387.	2.0	8
95	The photoprocess effects of an amino group located at different positions along the polymethine chain in indodicarbocyanine dyes. RSC Advances, 2017, 7, 30740-30746.	1.7	8
96	<i>Ex vivo</i> identification of circulating tumor cells in peripheral blood by fluorometric "turn on― aptamer nanoparticles. Chemical Science, 2021, 12, 3314-3321.	3.7	8
97	Biodegradable Ru-Containing Polycarbonate Micelles for Photoinduced Anticancer Multitherapeutic Agent Delivery and Phototherapy Enhancement. Biomacromolecules, 2022, 23, 1733-1744.	2.6	8
98	Redox-responsive phenyl-functionalized polylactide micelles for enhancing Ru complexes delivery and phototherapy. Chinese Chemical Letters, 2023, 34, 107574.	4.8	7
99	An Unconventional Polymerization Route to Hydrophilic Fluorescent Organic Nanoparticles for Multicolor Cellular Bioimaging. Chemistry - an Asian Journal, 2018, 13, 1625-1631.	1.7	4
100	Highly selective and sensitive colorimetric chemosensor based on tricarboyanine for detection of Ag+ in industrial wastewater. Journal of Leather Science and Engineering, 2020, 2, .	2.7	4
101	Synergistic Anticancer Therapy by Ovalbumin Encapsulationâ€Enabled Tandem Reactive Oxygen Species Generation. Angewandte Chemie, 2020, 132, 20183-20191.	1.6	4
102	Ultrasound-degradable serum albumin nanoplatform for <i>in situ</i> controlled drug release. Chemical Communications, 2020, 56, 7503-7506.	2.2	4
103	A Cyanine-based Liposomal Nanophotosensitizer for Enhanced Cancer Chemo-Photodynamic Therapy. Chemical Research in Chinese Universities, 2021, 37, 925-933.	1.3	4
104	Insights into bishemicyanines with long emission wavelengths and high sensitivity in viscous environments. Chinese Chemical Letters, 2020, 31, 1402-1405.	4.8	3
105	A PEGylated water-soluble fluorescent and colorimetric probe for carbon monoxide detection. Analyst, The, 2022, 147, 1798-1802.	1.7	2
106	Lightâ€ŧriggered dePEGylation with decreasing the diameter of hydroxyapatite nanocarriers for enhanced cellular uptake and tumor penetration. Nano Select, 2021, 2, 1954.	1.9	1