
Timothy R. Walsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9247662/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic Insights Into the Mechanism of Carbapenem Resistance Dissemination in Enterobacterales From a Tertiary Public Heath Setting in South Asia. Clinical Infectious Diseases, 2023, 76, 119-133.	2.9	6
2	lmitation of β-lactam binding enables broad-spectrum metallo-β-lactamase inhibitors. Nature Chemistry, 2022, 14, 15-24.	6.6	39
3	Comparing Long-Read Assemblers to Explore the Potential of a Sustainable Low-Cost, Low-Infrastructure Approach to Sequence Antimicrobial Resistant Bacteria With Oxford Nanopore Sequencing. Frontiers in Microbiology, 2022, 13, 796465.	1.5	13
4	To our friend, John. Lancet Infectious Diseases, The, 2022, , .	4.6	0
5	Early-Onset Neonatal Sepsis in Low- and Middle-Income Countries: Current Challenges and Future Opportunities. Infection and Drug Resistance, 2022, Volume 15, 933-946.	1.1	20
6	Silent circulation of BKC-1-producing Klebsiella pneumoniae ST442: molecular and clinical characterization of an early and unreported outbreak. International Journal of Antimicrobial Agents, 2022, 59, 106568.	1.1	1
7	Distinct increase in antimicrobial resistance genes among Escherichia coli during 50 years of antimicrobial use in livestock production in China. Nature Food, 2022, 3, 197-205.	6.2	34
8	Neonatal sepsis and mortality in low-income and middle-income countries from a facility-based birth cohort: an international multisite prospective observational study. The Lancet Global Health, 2022, 10, e661-e672.	2.9	54
9	A One-Health Sampling Strategy to Explore the Dissemination and Relationship Between Colistin Resistance in Human, Animal, and Environmental Sectors in Laos. Engineering, 2022, 15, 45-56.	3.2	8
10	Ending the Use of Human Antimicrobials in Food Production: The Good, the Bad, and the Ugly. Engineering, 2022, 15, 9-10.	3.2	1
11	Characterisation of Staphylococci species from neonatal blood cultures in low- and middle-income countries. BMC Infectious Diseases, 2022, 22, .	1.3	9
12	High prevalence and persistence of carbapenem and colistin resistance in livestock farm environments in China. Journal of Hazardous Materials, 2021, 406, 124298.	6.5	35
13	BKC-2, a New BKC Variant Detected in MCR-9.1-Producing Enterobacter hormaechei subsp. xiangfangensis. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	8
14	Prevalence and risk analysis of mobile colistin resistance and extended-spectrum <i>β</i> -lactamase genes carriage in pet dogs and their owners: a population based cross-sectional study. Emerging Microbes and Infections, 2021, 10, 242-251.	3.0	16
15	Quantifying the effects of antibiotic treatment on the extracellular polymer network of antimicrobial resistant and sensitive biofilms using multiple particle tracking. Npj Biofilms and Microbiomes, 2021, 7, 13.	2.9	15
16	Characterization of antimicrobial-resistant Gram-negative bacteria that cause neonatal sepsis in seven low- and middle-income countries. Nature Microbiology, 2021, 6, 512-523.	5.9	146
17	Clonal relatedness and plasmid profiling of extensively drug-resistant New Delhi metallo-β-lactamase-producing <i>Klebsiella pneumoniae</i> clinical isolates. Future Microbiology, 2021, 16, 229-239.	1.0	10
18	Emergence of mcr-3-mediated IncP and IncFII plasmids in Thailand. Journal of Global Antimicrobial Resistance, 2021, 24, 446-447.	0.9	3

#	Article	IF	CITATIONS
19	Vertical and horizontal dissemination of an IncC plasmid harbouring rmtB 16S rRNA methylase gene, conferring resistance to plazomicin, among invasive ST258 and ST16 KPC-producing Klebsiella pneumoniae. Journal of Global Antimicrobial Resistance, 2021, 24, 183-189.	0.9	14
20	Measuring Antimicrobial Use Needs Global Harmonization. Global Challenges, 2021, 5, 2100017.	1.8	4
21	Mobile Colistin Resistance Enzyme MCRâ€3 Facilitates Bacterial Evasion of Host Phagocytosis. Advanced Science, 2021, 8, e2101336.	5.6	11
22	Effects of antibiotic resistance, drug target attainment, bacterial pathogenicity and virulence, and antibiotic access and affordability on outcomes in neonatal sepsis: an international microbiology and drug evaluation prospective substudy (BARNARDS). Lancet Infectious Diseases, The, 2021, 21, 1677-1688.	4.6	50
23	A new mutation in mgrb mediating polymyxin resistance in Klebsiella variicola. International Journal of Antimicrobial Agents, 2021, 58, 106424.	1.1	5
24	Prevalence and risk factors for antimicrobial resistance among newborns with gram-negative sepsis. PLoS ONE, 2021, 16, e0255410.	1.1	20
25	A role for arthropods as vectors of multidrug-resistant Enterobacterales in surgical site infections from South Asia. Nature Microbiology, 2021, 6, 1259-1270.	5.9	16
26	Emergence of plasmid-mediated tigecycline resistance tet(X4) gene in Escherichia coli isolated from poultry, food and the environment in South Asia. Science of the Total Environment, 2021, 787, 147613.	3.9	40
27	Expansion of KPC–producing Enterobacterales in four large hospitals in Hanoi, Vietnam. Journal of Global Antimicrobial Resistance, 2021, 27, 200-211.	0.9	12
28	World Antimicrobial Awareness Week 2021 — Spread Awareness, Stop Resistance. China CDC Weekly, 2021, 3, 987-993.	1.0	6
29	Determinants of Stillbirth From Two Observational Studies Investigating Deliveries in Kano, Nigeria. Frontiers in Global Women S Health, 2021, 2, 788157.	1.1	2
30	Impact of carbapenem resistance on mortality in patients infected with <i>Enterobacteriaceae</i> : a systematic review and meta-analysis. BMJ Open, 2021, 11, e054971.	0.8	25
31	An Emerging Clone, Klebsiellapneumoniae Carbapenemase 2–Producing K. pneumoniae Sequence Type 16, Associated With High Mortality Rates in a CC258-Endemic Setting. Clinical Infectious Diseases, 2020, 71, e141-e150.	2.9	46
32	Compensatory mutations modulate the competitiveness and dynamics of plasmid-mediated colistin resistance in <i>Escherichia coli</i> clones. ISME Journal, 2020, 14, 861-865.	4.4	38
33	Clinical and Molecular Description of a High-Copy IncQ1 KPC-2 Plasmid Harbored by the International ST15 Klebsiella pneumoniae Clone. MSphere, 2020, 5, .	1.3	19
34	Use of polymyxins in Chinese hospitals. Lancet Infectious Diseases, The, 2020, 20, 1125-1126.	4.6	8
35	A Nosocomial Respiratory Infection Outbreak of Carbapenem-Resistant Escherichia coli ST131 With Multiple Transmissible blaKPC–2 Carrying Plasmids. Frontiers in Microbiology, 2020, 11, 2068.	1.5	18
36	Comprehensive analysis of IncC plasmid conjugation identifies a crucial role for the transcriptional regulator AcaB. Nature Microbiology, 2020, 5, 1340-1348.	5.9	23

#	Article	IF	CITATIONS
37	Gold standard susceptibility testing of fosfomycin in Staphylococcus aureus and Enterobacterales using a new agar dilution panel®. Journal of Global Antimicrobial Resistance, 2020, 23, 334-337.	0.9	9
38	Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: an epidemiological comparative study. Lancet Infectious Diseases, The, 2020, 20, 1161-1171.	4.6	212
39	Mobile oxazolidinone/phenicol resistance gene optrA in chicken Clostridium perfringens. Journal of Antimicrobial Chemotherapy, 2020, 75, 3067-3069.	1.3	17
40	Epidemiology of mobile colistin resistance genes mcr-1 to mcr-9. Journal of Antimicrobial Chemotherapy, 2020, 75, 3087-3095.	1.3	163
41	Fitness Cost of blaNDM-5-Carrying p3R-IncX3 Plasmids in Wild-Type NDM-Free Enterobacteriaceae. Microorganisms, 2020, 8, 377.	1.6	40
42	Farm animals and aquaculture: significant reservoirs of mobile colistin resistance genes. Environmental Microbiology, 2020, 22, 2469-2484.	1.8	68
43	Identification of the novel tigecycline resistance gene tet(X6) and its variants in Myroides, Acinetobacter and Proteus of food animal origin. Journal of Antimicrobial Chemotherapy, 2020, 75, 1428-1431.	1.3	69
44	KPC-2-producing Klebsiella pneumoniae ST147 in a neonatal unit: Clonal isolates with differences in colistin susceptibility attributed to AcrAB-TolC pump. International Journal of Antimicrobial Agents, 2020, 55, 105903.	1.1	36
45	Emergence of Mobile Colistin Resistance (<i>mcr-8</i>) in a Highly Successful Klebsiella pneumoniae Sequence Type 15 Clone from Clinical Infections in Bangladesh. MSphere, 2020, 5, .	1.3	27
46	Contaminated in-house environment contributes to the persistence and transmission of NDM-producing bacteria in a Chinese poultry farm. Environment International, 2020, 139, 105715.	4.8	51
47	A Klebsiella pneumoniae strain co-harbouring mcr-1 and mcr-3 from a human in Thailand. Journal of Antimicrobial Chemotherapy, 2020, 75, 2372-2374.	1.3	14
48	Molecular and epidemiological analysis of a Burkholderia cepacia sepsis outbreak from a tertiary care hospital in Bangladesh. PLoS Neglected Tropical Diseases, 2020, 14, e0008200.	1.3	0
49	Title is missing!. , 2020, 14, e0008200.		0
50	Title is missing!. , 2020, 14, e0008200.		0
51	Title is missing!. , 2020, 14, e0008200.		0
52	Title is missing!. , 2020, 14, e0008200.		0
53	Title is missing!. , 2020, 14, e0008200.		0
54	Title is missing!. , 2020, 14, e0008200.		0

#	Article	IF	CITATIONS
55	Title is missing!. , 2020, 14, e0008200.		0
56	Risk Factors for Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae Carriage in Patients Admitted to Intensive Care Unit in a Tertiary Care Hospital in Thailand. Microbial Drug Resistance, 2019, 25, 1182-1190.	0.9	20
57	Dissemination of genetically diverse NDM-1, -5, -7 producing-Gram-negative pathogens isolated from pediatric patients in Pakistan. Future Microbiology, 2019, 14, 691-704.	1.0	32
58	Inter-host Transmission of Carbapenemase-Producing <i>Escherichia coli</i> among Humans and Backyard Animals. Environmental Health Perspectives, 2019, 127, 107009.	2.8	85
59	Novel Plasmid-Mediated <i>tet</i> (X5) Gene Conferring Resistance to Tigecycline, Eravacycline, and Omadacycline in a Clinical Acinetobacter baumannii Isolate. Antimicrobial Agents and Chemotherapy, 2019, 64, .	1.4	124
60	Bicyclic Boronate VNRX-5133 Inhibits Metallo- and Serine-β-Lactamases. Journal of Medicinal Chemistry, 2019, 62, 8544-8556.	2.9	139
61	Extended spectrum ß-lactamase-producing Escherichia coli among backyard poultry farms, farmers, and environments in Thailand. Poultry Science, 2019, 98, 2622-2631.	1.5	37
62	<i>In vitro</i> activity of apramycin against multidrug-, carbapenem- and aminoglycoside-resistant Enterobacteriaceae and <i>Acinetobacter baumannii</i> . Journal of Antimicrobial Chemotherapy, 2019, 74, 944-952.	1.3	76
63	Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nature Microbiology, 2019, 4, 1450-1456.	5.9	455
64	Integrated aquaculture contributes to the transfer of mcr-1 between animals and humans via the aquaculture supply chain. Environment International, 2019, 130, 104708.	4.8	53
65	Profiling interactions of vaborbactam with metallo-β-lactamases. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1981-1984.	1.0	34
66	Effect of carbapenem resistance on outcomes of bloodstream infection caused by Enterobacteriaceae in low-income and middle-income countries (PANORAMA): a multinational prospective cohort study. Lancet Infectious Diseases, The, 2019, 19, 601-610.	4.6	130
67	Studies on the inhibition of AmpC and other β-lactamases by cyclic boronates. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 742-748.	1.1	28
68	Antibiotic resistance, stewardship, and consumption – Authors' reply. Lancet Planetary Health, The, 2019, 3, e68.	5.1	0
69	Outbreak of Hypervirulent Multidrug-resistant <i>Klebsiella variicola</i> Causing High Mortality in Neonates in Bangladesh. Clinical Infectious Diseases, 2019, 68, 1225-1227.	2.9	26
70	The polymyxin derivative NAB739 is synergistic with several antibiotics against polymyxin-resistant strains of Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii. Peptides, 2019, 112, 149-153.	1.2	13
71	Crystal structures of VIMâ€1 complexes explain active site heterogeneity in VIMâ€class metalloâ€Î²â€łactamases. FEBS Journal, 2019, 286, 169-183.	2.2	30

Environmental dissemination of mcr-1 positive Enterobacteriaceae by Chrysomya spp. (common) Tj ETQq000 rgBT/Qverlock 10 Tf 50 6

#	Article	IF	CITATIONS
73	Genetic environment of colistin resistance genes mcr-1 and mcr-3 in Escherichia coli from one pig farm in China. Veterinary Microbiology, 2019, 230, 56-61.	0.8	36
74	Emergence of mcr-1 mediated colistin resistant Escherichia coli from a hospitalized patient in Bangladesh. Journal of Infection in Developing Countries, 2019, 13, 773-776.	0.5	7
75	Heavy Metal Resistance Genes Are Associated with <i>bla</i> _{NDM-1} - and <i>bla</i> _{CTX-M-15} -Carrying Enterobacteriaceae. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	35
76	Combating Global Antibiotic Resistance: Emerging One Health Concerns in Lower- and Middle-Income Countries. Clinical Infectious Diseases, 2018, 66, 963-969.	2.9	95
77	Clinical Validation of SensiTest Colistin, a Broth Microdilution-Based Method To Evaluate Colistin MICs. Journal of Clinical Microbiology, 2018, 56, .	1.8	30
78	First identification of clinical isolate of a Novel "NDM-4―producing Escherichia coli ST405 from urine sample in Pakistan. Brazilian Journal of Microbiology, 2018, 49, 949-950.	0.8	12
79	Occurrence of extended spectrum β-lactamase and AmpC genes among multidrug-resistant Escherichia coli and emergence of ST131 from poultry meat in Thailand. Food Control, 2018, 84, 159-164.	2.8	20
80	Copper lons and Coordination Complexes as Novel Carbapenem Adjuvants. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	31
81	Emerging Carriage of NDM-5 and MCR-1 in Escherichia coli From Healthy People in Multiple Regions in China: A Cross Sectional Observational Study. EClinicalMedicine, 2018, 6, 11-20.	3.2	65
82	Novel partners with colistin to increase its in vivo therapeutic effectiveness and prevent the occurrence of colistin resistance in NDM- and MCR-co-producing Escherichia coli in a murine infection model. Journal of Antimicrobial Chemotherapy, 2018, 74, 87-95.	1.3	13
83	Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. Lancet Planetary Health, The, 2018, 2, e398-e405.	5.1	430
84	Prevalence and Genetic Analysis of <i>mcr-3</i> -Positive Aeromonas Species from Humans, Retail Meat, and Environmental Water Samples. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	58
85	Heterogeneous and Flexible Transmission of <i>mcr-1</i> in Hospital-Associated Escherichia coli. MBio, 2018, 9, .	1.8	54
86	Anthropogenic and environmental factors associated with high incidence of mcr-1 carriage in humans across China. Nature Microbiology, 2018, 3, 1054-1062.	5.9	139
87	A one-health approach to antimicrobial resistance. Nature Microbiology, 2018, 3, 854-855.	5.9	80
88	Combination Therapy Strategies Against Multiple-Resistant Streptococcus Suis. Frontiers in Pharmacology, 2018, 9, 489.	1.6	12
89	Risk Factors for Gastrointestinal Colonization and Acquisition of Carbapenem-Resistant Gram-Negative Bacteria among Patients in Intensive Care Units in Thailand. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	28
90	Identification of carbapenem-resistant Pseudomonas aeruginosa in selected hospitals of the Gulf Cooperation Council States: dominance of high-risk clones in the region. Journal of Medical Microbiology, 2018, 67, 846-853.	0.7	44

#	Article	IF	CITATIONS
91	Insights into the Mechanistic Basis of Plasmid-Mediated Colistin Resistance from Crystal Structures of the Catalytic Domain of MCR-1. Scientific Reports, 2017, 7, 39392.	1.6	107
92	Prevalence, risk factors, outcomes, and molecular epidemiology of mcr-1 -positive Enterobacteriaceae in patients and healthy adults from China: an epidemiological and clinical study. Lancet Infectious Diseases, The, 2017, 17, 390-399.	4.6	298
93	Plasmid-Mediated Novel <i>bla</i> _{NDM-17} Gene Encoding a Carbapenemase with Enhanced Activity in a Sequence Type 48 Escherichia coli Strain. Antimicrobial Agents and Chemotherapy, 2017, 61,	1.4	67
94	Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Nature Microbiology, 2017, 2, 16260.	5.9	347
95	Toxin–antitoxin systems and their role in disseminating and maintaining antimicrobial resistance. FEMS Microbiology Reviews, 2017, 41, 343-353.	3.9	99
96	Presence of VIM-Positive Pseudomonas Species in Chickens and Their Surrounding Environment. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	21
97	MCR-1-producing Klebsiella pneumoniae outbreak in China. Lancet Infectious Diseases, The, 2017, 17, 577.	4.6	45
98	Balancing mcr-1 expression and bacterial survival is a delicate equilibrium between essential cellular defence mechanisms. Nature Communications, 2017, 8, 2054.	5.8	157
99	Novel Plasmid-Mediated Colistin Resistance Gene <i>mcr-3</i> in <i>Escherichia coli</i> . MBio, 2017, 8, .	1.8	388
100	Identification of IncA/C Plasmid Replication and Maintenance Genes and Development of a Plasmid Multilocus Sequence Typing Scheme. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	106
101	1.12â€Ã resolution crystal structure of the catalytic domain of the plasmid-mediated colistin resistance determinant MCR-2. Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 443-449.	0.4	22
102	<i>mcr-1</i> in <i>Enterobacteriaceae</i> from Companion Animals, Beijing, China, 2012–2016. Emerging Infectious Diseases, 2017, 23, 710-711.	2.0	48
103	Detection and dissemination of the colistin resistance gene, mcr-1, from isolates and faecal samples in China. Journal of Medical Microbiology, 2017, 66, 119-125.	0.7	28
104	Complete Sequence of the FII Plasmid p42-2, Carrying <i>bla</i> _{CTX-M-55} , <i>oqxAB</i> , <i>fosA3</i> , and <i>floR</i> from Escherichia coli. Antimicrobial Agents and Chemotherapy, 2016, 60, 4336-4338.	1.4	16
105	Mechanisms Involved in Acquisition of <i>bla</i> _{NDM} Genes by IncA/C ₂ and IncFII _Y Plasmids. Antimicrobial Agents and Chemotherapy, 2016, 60, 4082-4088.	1.4	49
106	China bans colistin as a feed additive for animals. Lancet Infectious Diseases, The, 2016, 16, 1102-1103.	4.6	228
107	Antibiotic resistance in acne – Authors' reply. Lancet Infectious Diseases, The, 2016, 16, 776-777.	4.6	0
108	Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infectious Diseases, The, 2016, 16, 161-168.	4.6	4,130

#	Article	IF	CITATIONS
109	A New Class of Safe Oligosaccharide Polymer Therapy To Modify the Mucus Barrier of Chronic Respiratory Disease. Molecular Pharmaceutics, 2016, 13, 863-872.	2.3	68
110	Systematic review of antibiotic resistance in acne: an increasing topical and oral threat. Lancet Infectious Diseases, The, 2016, 16, e23-e33.	4.6	180
111	Infection by and dissemination of NDM-5-producing <i>Escherichia coli</i> in China: TableÂ1 Journal of Antimicrobial Chemotherapy, 2016, 71, 563-565.	1.3	46
112	Structural Basis of Metallo-β-Lactamase Inhibition by Captopril Stereoisomers. Antimicrobial Agents and Chemotherapy, 2016, 60, 142-150.	1.4	134
113	Prevalence and Clinical Burden of NDM-1 Positive Infections in Pediatric and Neonatal Patients in Pakistan. Pediatric Infectious Disease Journal, 2015, 34, 452-454.	1.1	22
114	Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii Isolates in the Gulf Cooperation Council States: Dominance of OXA-23-Type Producers. Journal of Clinical Microbiology, 2015, 53, 896-903.	1.8	103
115	Characterization of Plasmids in Extensively Drug-Resistant Acinetobacter Strains Isolated in India and Pakistan. Antimicrobial Agents and Chemotherapy, 2015, 59, 923-929.	1.4	54
116	Clobal dissemination of a multidrug resistant <i>Escherichia coli</i> clone. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5694-5699.	3.3	498
117	Dextrin–Colistin Conjugates as a Model Bioresponsive Treatment for Multidrug Resistant Bacterial Infections. Molecular Pharmaceutics, 2014, 11, 4437-4447.	2.3	41
118	Molecular Characterization of Carbapenemase-Producing Escherichia coli and Klebsiella pneumoniae in the Countries of the Gulf Cooperation Council: Dominance of OXA-48 and NDM Producers. Antimicrobial Agents and Chemotherapy, 2014, 58, 3085-3090.	1.4	140
119	Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature, 2014, 510, 503-506.	13.7	461
120	Plasmid Carriage of <i>bla</i> _{NDM-1} in Clinical Acinetobacter baumannii Isolates from India. Antimicrobial Agents and Chemotherapy, 2014, 58, 4211-4213.	1.4	63
121	Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: a longitudinal epidemiological and clinical study. Lancet Infectious Diseases, The, 2013, 13, 867-876.	4.6	153
122	β-Lactamase Production in Key Gram-Negative Pathogen Isolates from the Arabian Peninsula. Clinical Microbiology Reviews, 2013, 26, 361-380.	5.7	155
123	Crystal Structures of Pseudomonas aeruginosa GIM-1: Active-Site Plasticity in Metallo-β-Lactamases. Antimicrobial Agents and Chemotherapy, 2013, 57, 848-854.	1.4	22
124	Crystal Structure of the Mobile Metallo-β-Lactamase AIM-1 from Pseudomonas aeruginosa: Insights into Antibiotic Binding and the Role of Gln157. Antimicrobial Agents and Chemotherapy, 2012, 56, 4341-4353.	1.4	57
125	Plasmid typing and genetic context of AmpC β-lactamases in Enterobacteriaceae lacking inducible chromosomal ampC genes: findings from a Spanish hospital 1999–2007. Journal of Antimicrobial Chemotherapy, 2012, 67, 115-122.	1.3	53
126	Genetic and Biochemical Characterization of an Acquired Subgroup B3 Metallo-β-Lactamase Gene, <i>bla</i> _{AIM-1} , and Its Unique Genetic Context in Pseudomonas aeruginosa from Australia. Antimicrobial Agents and Chemotherapy, 2012, 56, 6154-6159.	1.4	83

#	Article	IF	CITATIONS
127	The emergence of pan-resistant Gram-negative pathogens merits a rapid global political response. Journal of Antimicrobial Chemotherapy, 2012, 67, 1-3.	1.3	125
128	Genetic and Biochemical Characterization of a Novel Metallo-Î ² -Lactamase, TMB-1, from an Achromobacter xylosoxidans Strain Isolated in Tripoli, Libya. Antimicrobial Agents and Chemotherapy, 2012, 56, 2241-2245.	1.4	53
129	Overcoming Drug Resistance with Alginate Oligosaccharides Able To Potentiate the Action of Selected Antibiotics. Antimicrobial Agents and Chemotherapy, 2012, 56, 5134-5141.	1.4	140
130	Dissemination of NDM-1 – Authors' reply. Lancet Infectious Diseases, The, 2012, 12, 101-102.	4.6	2
131	First report of mefA and msrA/msrB multidrug efflux pumps associated with blaTEM-1 β-lactamase in Enterococcus faecalis. International Journal of Infectious Diseases, 2012, 16, e104-e109.	1.5	22
132	Diverse Sequence Types of Klebsiella pneumoniae Contribute to the Dissemination of <i>bla</i> _{NDM-1} in India, Sweden, and the United Kingdom. Antimicrobial Agents and Chemotherapy, 2012, 56, 2735-2738.	1.4	165
133	Hand hygiene does work. Lancet Infectious Diseases, The, 2012, 12, 828-829.	4.6	2
134	Multiplex PCR for detection of acquired carbapenemase genes. Diagnostic Microbiology and Infectious Disease, 2011, 70, 119-123.	0.8	1,453
135	Structural and Computational Investigations of VIM-7: Insights into the Substrate Specificity of VIM Metallo-β-Lactamases. Journal of Molecular Biology, 2011, 411, 174-189.	2.0	35
136	Tackling antibiotic resistance. Nature Reviews Microbiology, 2011, 9, 894-896.	13.6	919
137	The emerging NDM carbapenemases. Trends in Microbiology, 2011, 19, 588-595.	3.5	553
138	Balkan NDM-1: escape or transplant?. Lancet Infectious Diseases, The, 2011, 11, 164.	4.6	58
139	Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infectious Diseases, The, 2011, 11, 355-362.	4.6	1,045
140	The new medical challenge: why NDM-1? Why Indian?. Expert Review of Anti-Infective Therapy, 2011, 9, 137-141.	2.0	47
141	Combinatorial events of insertion sequences and ICE in Gram-negative bacteria. FEMS Microbiology Reviews, 2011, 35, 912-935.	3.9	164
142	VIM and IMP metallo-β-lactamases and other extended-spectrum β-lactamases in Escherichia coli and Klebsiella pneumoniae from environmental samples in a Tunisian hospital. Apmis, 2011, 119, 725-732.	0.9	27
143	New Delhi metallo-Â-lactamase-1: detection and prevention. Cmaj, 2011, 183, 1240-1241.	0.9	10
144	A Promising Target for Treatment of Multidrug-Resistant Bacterial Infections. Antimicrobial Agents and Chemotherapy, 2011, 55, 3635-3636.	1.4	25

#	Article	IF	CITATIONS
145	Prevalence of SXT/R391-like integrative and conjugative elements carrying blaCMY-2 in Proteus mirabilis. Journal of Antimicrobial Chemotherapy, 2011, 66, 2266-2270.	1.3	45
146	How To Detect NDM-1 Producers. Journal of Clinical Microbiology, 2011, 49, 718-721.	1.8	295
147	Carbapenem Resistance in Klebsiella pneumoniae Due to the New Delhi Metallo-Â-lactamase. Clinical Infectious Diseases, 2011, 52, 481-484.	2.9	114
148	Induction of Â-lactamase production in Aeromonas hydrophila is responsive to Â-lactam-mediated changes in peptidoglycan composition. Microbiology (United Kingdom), 2010, 156, 2327-2335.	0.7	49
149	IS CR Elements Are Key Players in IncA/C Plasmid Evolution. Antimicrobial Agents and Chemotherapy, 2010, 54, 3534-3534.	1.4	39
150	First Report of the Metallo-β-Lactamase SPM-1 in Europe. Antimicrobial Agents and Chemotherapy, 2010, 54, 582-582.	1.4	63
151	Molecular Epidemiology of Metallo-β-Lactamase-Producing <i>Pseudomonas aeruginosa</i> Isolates from Norway and Sweden Shows Import of International Clones and Local Clonal Expansion. Antimicrobial Agents and Chemotherapy, 2010, 54, 346-352.	1.4	136
152	Emerging carbapenemases: a global perspective. International Journal of Antimicrobial Agents, 2010, 36, S8-S14.	1.1	418
153	Carriage of qnrA1 and qnrB2, blaCTX-M15, and complex class 1 integron in a clinical multiresistant Citrobacter freundii isolate. Diagnostic Microbiology and Infectious Disease, 2010, 67, 188-190.	0.8	8
154	Thermodynamics of RTA3 peptide binding to membranes and consequences for antimicrobial activity. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1254-1262.	1.4	14
155	Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infectious Diseases, The, 2010, 10, 597-602.	4.6	2,485
156	New Delhi metallo-β-lactamase 1 – Authors' reply. Lancet Infectious Diseases, The, 2010, 10, 752-754.	4.6	8
157	Global spread of New Delhi metallo-β-lactamase 1. Lancet Infectious Diseases, The, 2010, 10, 829-830.	4.6	87
158	Molecular Analysis of the Sequences Surrounding <i>bla</i> _{OXA-45} Reveals Acquisition of This Gene by <i>Pseudomonas aeruginosa</i> via a Novel IS <i>CR</i> Element, IS <i>CR5</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 1248-1251.	1.4	11
159	The First Metallo-β-Lactamase Identified in Norway Is Associated with a TniC-Like Transposon in a Pseudomonas aeruginosa Isolate of Sequence Type 233 Imported from Ghana. Antimicrobial Agents and Chemotherapy, 2009, 53, 331-332.	1.4	26
160	IS <i>CR2</i> , Another Vehicle for <i>bla</i> _{VEB} Gene Acquisition. Antimicrobial Agents and Chemotherapy, 2009, 53, 4940-4943.	1.4	29
161	Characterization of a New Metallo-β-Lactamase Gene, <i>bla</i> _{NDM-1} , and a Novel Erythromycin Esterase Gene Carried on a Unique Genetic Structure in <i>Klebsiella pneumoniae</i> Sequence Type 14 from India. Antimicrobial Agents and Chemotherapy, 2009, 53, 5046-5054.	1.4	2,065
162	Evaluation of the Effectiveness of Common Hospital Hand Disinfectants Against Methicillin-ResistantStaphylococcus aureus,Glycopeptide-Intermediate S.aureus,and Heterogeneous Glycopeptide-IntermediateS. aureus. Infection Control and Hospital Epidemiology, 2009, 30, 226-232.	1.0	19

#	Article	IF	CITATIONS
163	Dissemination of CTX-M-15 β-Lactamase Genes Carried on Inc FI and FII Plasmids among Clinical Isolates of <i>Escherichia coli</i> in a University Hospital in Istanbul, Turkey. Journal of Clinical Microbiology, 2008, 46, 1110-1112.	1.8	48
164	Complete Sequence of p07-406, a 24,179-Base-Pair Plasmid Harboring the <i>bla</i> _{VIM-7} Metallo-β-Lactamase Gene in a <i>Pseudomonas aeruginosa</i> Isolate from the United States. Antimicrobial Agents and Chemotherapy, 2008, 52, 3099-3105.	1.4	23
165	Origin of Low Mammalian Cell Toxicity in a Class of Highly Active Antimicrobial Amphipathic Helical Peptides. Journal of Biological Chemistry, 2008, 283, 18636-18645.	1.6	73
166	Emergence and persistence of integron structures harbouring VIM genes in the Children's Memorial Health Institute, Warsaw, Poland, 1998-2006. Journal of Antimicrobial Chemotherapy, 2008, 63, 269-273.	1.3	37
167	Evaluation of a New Etest Vancomycin-Teicoplanin Strip for Detection of Glycopeptide-Intermediate <i>Staphylococcus aureus</i> (GISA), in Particular, Heterogeneous GISA. Journal of Clinical Microbiology, 2008, 46, 3042-3047.	1.8	88
168	Evolution of the IS <i>CR3</i> Group of IS <i>CR</i> Elements. Antimicrobial Agents and Chemotherapy, 2008, 52, 3789-3791.	1.4	35
169	Redefining extended-spectrum Â-lactamases: balancing science and clinical need. Journal of Antimicrobial Chemotherapy, 2008, 63, 1-4.	1.3	92
170	Kinetic Characterization of VIM-7, a Divergent Member of the VIM Metallo-β-Lactamase Family. Antimicrobial Agents and Chemotherapy, 2008, 52, 2905-2908.	1.4	29
171	The AmpC phenotype in Norwegian clinical isolates of Escherichia coli is associated with an acquired ISEcp1-like ampC element or hyperproduction of the endogenous AmpC. Journal of Antimicrobial Chemotherapy, 2008, 62, 694-702.	1.3	47
172	Clinically significant carbapenemases: an update. Current Opinion in Infectious Diseases, 2008, 21, 367-371.	1.3	149
173	bla VIM-2-Harboring Integrons Isolated in India, Russia, and the United States Arise from an Ancestral Class 1 Integron Predating the Formation of the 3′ Conserved Sequence. Antimicrobial Agents and Chemotherapy, 2007, 51, 2636-2638.	1.4	48
174	A Multicenter Study Evaluating the Current Strategies for Isolating Staphylococcus aureus Strains with Reduced Susceptibility to Glycopeptides. Journal of Clinical Microbiology, 2007, 45, 329-332.	1.8	120
175	Characterization of an Integron Carrying bla IMP-1 and a New Aminoglycoside Resistance Gene, aac(6′)-31 , and Its Dissemination among Genetically Unrelated Clinical Isolates in a Brazilian Hospital. Antimicrobial Agents and Chemotherapy, 2007, 51, 2611-2614.	1.4	60
176	Effects of Phenotype and Genotype on Methods for Detection of Extended-Spectrum-β-Lactamase-Producing Clinical Isolates of Escherichia coli and Klebsiella pneumoniae in Norway. Journal of Clinical Microbiology, 2007, 45, 199-205.	1.8	121
177	A multi-center blinded study on the efficiency of phenotypic screening methods to detect glycopeptide intermediately susceptible Staphylococcus aureus (GISA) and heterogeneous GISA (h-GISA). Annals of Clinical Microbiology and Antimicrobials, 2007, 6, 9.	1.7	29
178	Nosocomial outbreak of CTX-M-15-producing E. coli in Norway. Apmis, 2007, 115, 120-126.	0.9	41
179	IS CR Elements: Novel Gene-Capturing Systems of the 21st Century?. Microbiology and Molecular Biology Reviews, 2006, 70, 296-316.	2.9	529
180	Analysis of Salmonella spp. with resistance to extended-spectrum cephalosporins and fluoroquinolones isolated in North America and Latin America: report from the SENTRY Antimicrobial Surveillance Program (1997–2004). Diagnostic Microbiology and Infectious Disease, 2006, 54, 13-21.	0.8	49

#	Article	IF	CITATIONS
181	Characterization of fluoroquinolone-resistant β-hemolytic Streptococcus spp. isolated in North America and Europe including the first report of fluoroquinolone-resistant Streptococcus dysgalactiae subspecies equisimilis: Report from the SENTRY Antimicrobial Surveillance Program (1997–2004). Diagnostic Microbiology and Infectious Disease, 2006, 55, 119-127.	0.8	60
182	Crystal Structure of Pseudomonas aeruginosa SPM-1 Provides Insights into Variable Zinc Affinity of Metallo-Î ² -lactamases. Journal of Molecular Biology, 2006, 357, 890-903.	2.0	88
183	Combinatorial genetic evolution of multiresistance. Current Opinion in Microbiology, 2006, 9, 476-482.	2.3	67
184	A New Approach to the Inhibition of Metallo-Î ² -lactamases. Angewandte Chemie - International Edition, 2006, 45, 1022-1026.	7.2	54
185	Comparative Bactericidal Activities of Daptomycin and Vancomycin against Glycopeptide-Intermediate Staphylococcus aureus (GISA) and Heterogeneous GISA Isolates. Antimicrobial Agents and Chemotherapy, 2006, 50, 4195-4197.	1.4	61
186	Integrons Containing the VIM-2 Metallo-β-Lactamase Gene among Imipenem-Resistant Pseudomonas aeruginosa Strains from Different Chinese Hospitals. Journal of Clinical Microbiology, 2006, 44, 4242-4245.	1.8	33
187	Common regions e.g. orf513 and antibiotic resistance: IS91-like elements evolving complex class 1 integrons. Journal of Antimicrobial Chemotherapy, 2006, 58, 1-6.	1.3	105
188	Bulgecin A: a novel inhibitor of binuclear metallo-β-lactamases. Biochemical Journal, 2005, 387, 585-590.	1.7	30
189	Metallo-Î ² -Lactamases: the Quiet before the Storm?. Clinical Microbiology Reviews, 2005, 18, 306-325.	5.7	1,283
190	Emerging Metalloâ€Î²â€Łactamase–Mediated Resistances: A Summary Report from the Worldwide SENTRY Antimicrobial Surveillance Program. Clinical Infectious Diseases, 2005, 41, S276-S278.	2.9	72
191	Reduced expression of the atl autolysin gene and susceptibility to autolysis in clinical heterogeneous glycopeptide-intermediate Staphylococcus aureus (hGISA) and GISA strains. Journal of Antimicrobial Chemotherapy, 2005, 56, 944-947.	1.3	36
192	Italian metallo-β-lactamases: a national problem? Report from the SENTRY Antimicrobial Surveillance Programme. Journal of Antimicrobial Chemotherapy, 2005, 55, 61-70.	1.3	83
193	Functional Characterization of OXA-57, a Class D β-Lactamase from Burkholderia pseudomallei. Antimicrobial Agents and Chemotherapy, 2005, 49, 1639-1641.	1.4	24
194	Evolution and dissemination of extended-spectrum β-lactamase-producing Klebsiella pneumoniae: Epidemiology and molecular report from the SENTRY Antimicrobial Surveillance Program (1997–2003). Diagnostic Microbiology and Infectious Disease, 2005, 51, 1-7.	0.8	40
195	Dissemination and diversity of metallo-l²-lactamases in Latin America: report from the SENTRY Antimicrobial Surveillance Program. International Journal of Antimicrobial Agents, 2005, 25, 57-61.	1.1	93
196	Pharmacodynamics of Ceftazidime plus the Serine β-Lactamase Inhibitor AM-112 against Escherichia coli Containing TEM-1 and CTX-M-1 β-Lactamases. Antimicrobial Agents and Chemotherapy, 2004, 48, 4482-4484.	1.4	5
197	Pseudomonas aeruginosa strains harbouring an unusual blaVIM-4 gene cassette isolated from hospitalized children in Poland (1998-2001). Journal of Antimicrobial Chemotherapy, 2004, 53, 451-456.	1.3	62
198	Emergence of the Extended-Spectrum Î ² -Lactamase GES-1 in a Pseudomonas aeruginosa Strain from Brazil: Report from the SENTRY Antimicrobial Surveillance Program. Antimicrobial Agents and Chemotherapy, 2004, 48, 2344-2345.	1.4	46

#	Article	IF	CITATIONS
199	bla VIM-7 , an Evolutionarily Distinct Metallo-β-Lactamase Gene in a Pseudomonas aeruginosa Isolate from the United States. Antimicrobial Agents and Chemotherapy, 2004, 48, 329-332.	1.4	129
200	First Isolation of bla VIM-2 in Latin America: Report from the SENTRY Antimicrobial Surveillance Program. Antimicrobial Agents and Chemotherapy, 2004, 48, 1433-1434.	1.4	45
201	Molecular Characterization of a β-Lactamase Gene, bla GIM-1 , Encoding a New Subclass of Metallo-β-Lactamase. Antimicrobial Agents and Chemotherapy, 2004, 48, 4654-4661.	1.4	236
202	Antimicrobial Susceptibility and Epidemiology of a Worldwide Collection of Chryseobacterium spp.: Report from the SENTRY Antimicrobial Surveillance Program (1997-2001). Journal of Clinical Microbiology, 2004, 42, 445-448.	1.8	230
203	Integron Carrying a Novel Metallo- \hat{I}^2 -Lactamase Gene, bla IMP-16, and a Fused Form of Aminoglycoside-Resistant Gene aac($\hat{G}\hat{e}^2$)- $30/aac(\hat{G}\hat{e}^2)$ -lbâ \hat{e}^2 : Report from the SENTRY Antimicrobial Surveillance Program. Antimicrobial Agents and Chemotherapy, 2004, 48, 4693-4702.	1.4	86
204	Penicillin-derived inhibitors that simultaneously target both metallo- and serine-Î ² -lactamases. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 1299-1304.	1.0	74
205	Analysis of AmpC Â-lactamase expression and sequence in biochemically atypical ceftazidime-resistant Enterobacteriaceae from paediatric patients. Journal of Antimicrobial Chemotherapy, 2004, 53, 584-591.	1.3	14
206	Role of the 'cre/blr-tag' DNA sequence in regulation of gene expression by the Aeromonas hydrophila Â-lactamase regulator, BlrA. Journal of Antimicrobial Chemotherapy, 2004, 53, 197-202.	1.3	28
207	Over-expression, purification, and characterization of metallo-β-lactamase ImiS from Aeromonas veronii bv. sobria. Protein Expression and Purification, 2004, 36, 272-279.	0.6	50
208	hGISA: seek and ye shall find. Lancet, The, 2004, 364, 500-501.	6.3	10
209	Salmonella bloodstream infections: report from the SENTRY Antimicrobial Surveillance Program (1997–2001). International Journal of Antimicrobial Agents, 2003, 22, 395-405.	1.1	21
210	Genetic linkage of the penicillinase gene, amp, and blrAB, encoding the regulator of beta-lactamase expression in Aeromonas spp Journal of Antimicrobial Chemotherapy, 2003, 51, 1351-1358.	1.3	49
211	Genetic characterization of a novel metallo-Â-lactamase gene, blaIMP-13, harboured by a novel Tn5051-type transposon disseminating carbapenemase genes in Europe: report from the SENTRY worldwide antimicrobial surveillance programme. Journal of Antimicrobial Chemotherapy, 2003, 52, 583-590.	1.3	81
212	Molecular and Biochemical Characterization of OXA-45, an Extended-Spectrum Class 2d′ β-Lactamase in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2003, 47, 2859-2863.	1.4	47
213	Activity of AZD2563, a Novel Oxazolidinone, against Staphylococcus aureus Strains with Reduced Susceptibility to Vancomycin or Linezolid. Antimicrobial Agents and Chemotherapy, 2003, 47, 3651-3652.	1.4	21
214	Evolution of an integron carrying blaVIM-2 in Eastern Europe: report from the SENTRY Antimicrobial Surveillance Program. Journal of Antimicrobial Chemotherapy, 2003, 52, 116-119.	1.3	58
215	Biochemical Characterization of the Acquired Metallo-β-Lactamase SPM-1 from Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2003, 47, 582-587.	1.4	66
216	Evaluation of a New Etest for Detecting Metallo-Â-Lactamases in Routine Clinical Testing. Journal of Clinical Microbiology, 2002, 40, 2755-2759.	1.8	213

#	Article	IF	CITATIONS
217	Characterization of Monomeric L1 Metallo-β-lactamase and the Role of the N-terminal Extension in Negative Cooperativity and Antibiotic Hydrolysis. Journal of Biological Chemistry, 2002, 277, 24744-24752.	1.6	33
218	The Prevalence and Mechanisms of Vancomycin Resistance inStaphylococcus Aureus. Annual Review of Microbiology, 2002, 56, 657-675.	2.9	197
219	Plasmid Location and Molecular Heterogeneity of the L1 and L2 β-Lactamase Genes of Stenotrophomonas maltophilia. Antimicrobial Agents and Chemotherapy, 2001, 45, 413-419.	1.4	121
220	A novel metallo-β-lactamase, Mbl1b, produced by the environmental bacteriumCaulobacter crescentus1. FEBS Letters, 2001, 509, 350-354.	1.3	31
221	The problem of a solvent exposable disulfide when preparing Co(II)-substituted metallo-β-lactamase L1 from Stenotrophomonas maltophilia. Journal of Biological Inorganic Chemistry, 2001, 6, 91-99.	1.1	27
222	pUB6060: A Broad-Host-Range, DNA Polymerase-l-Independent ColE2-like Plasmid. Plasmid, 2001, 45, 88-100.	0.4	24
223	Escherichia coli CreBC Is a Global Regulator of Gene Expression That Responds to Growth in Minimal Media. Journal of Biological Chemistry, 2001, 276, 26955-26961.	1.6	85
224	Novel Mechanism of Hydrolysis of Therapeutic β-Lactams byStenotrophomonas maltophilia L1 Metallo-β-lactamase. Journal of Biological Chemistry, 2001, 276, 33638-33644.	1.6	85
225	Evaluation of Current Methods for Detection of Staphylococci with Reduced Susceptibility to Glycopeptides. Journal of Clinical Microbiology, 2001, 39, 2439-2444.	1.8	290
226	A TEM-2 beta-lactamase encoded on an active Tn1-like transposon in the genome of a clinical isolate of Stenotrophomonas maltophilia. Journal of Antimicrobial Chemotherapy, 2000, 46, 879-884.	1.3	77
227	Expression and detection of hetero-vancomycin resistance in Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 1999, 44, 675-678.	1.3	47
228	Overexpression, Purification, and Characterization of the Cloned Metallo-β-Lactamase L1 from <i>Stenotrophomonas maltophilia</i> . Antimicrobial Agents and Chemotherapy, 1998, 42, 921-926.	1.4	181
229	Enzyme kinetics and biochemical analysis of ImiS, the metallo-β-lactamase from Aeromonas sobria 163a. Journal of Antimicrobial Chemotherapy, 1996, 37, 423-431.	1.3	61
230	Sequence analysis of two chromosomally mediated inducible β-lactamases from Aeromonas sobria, strain 163a, one a class D penicillinase, the other an AmpC cephalosporinase. Journal of Antimicrobial Chemotherapy, 1995, 36, 41-52.	1.3	48
231	A clinical isolate of Aeromonas sobria with three chromosomally mediated inducible β-lactamases: a cephalosporinase, a penicillinase and a third enzyme, displaying carbapenemase activity. Journal of Antimicrobial Chemotherapy, 1995, 35, 271-279.	1.3	63
232	Sequence analysis of the L1 metallo-β-lactamase from Xanthomonas maltophilia. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1218, 199-201.	2.4	156