
Volker M. Arlt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9247427/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organoids for toxicology and genetic toxicology: applications with drugs and prospects for environmental carcinogenesis. Mutagenesis, 2022, 37, 143-154.	2.6	12
2	Mutagenicity of 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N–OH-PhIP) in human TP53 knock-in (Hupki) mouse embryo fibroblasts. Food and Chemical Toxicology, 2021, 147, 111855.	3.6	4
3	Effect of 2-acetylaminofluorene and its genotoxic metabolites on DNA adduct formation and DNA damage in 3D reconstructed human skin tissue models. Mutagenesis, 2021, 36, 63-74.	2.6	8
4	Benzo[a]pyrene and Caenorhabditis elegans: defining the genotoxic potential in an organism lacking the classical CYP1A1 pathway. Archives of Toxicology, 2021, 95, 1055-1069.	4.2	17
5	Mutagenicity of N â€hydroxyâ€4â€aminobiphenyl in human TP53 knockâ€in (Hupki) mouse embryo fibroblasts. Environmental and Molecular Mutagenesis, 2021, 62, 252-264.	2.2	0
6	Benzo[a]pyrene-Induced Genotoxicity in Rats Is Affected by Co-Exposure to Sudan I by Altering the Expression of Biotransformation Enzymes. International Journal of Molecular Sciences, 2021, 22, 8062.	4.1	9
7	Co-Exposure to Aristolochic Acids I and II Increases DNA Adduct Formation Responsible for Aristolochic Acid I-Mediated Carcinogenicity in Rats. International Journal of Molecular Sciences, 2021, 22, 10479.	4.1	15
8	Cytochrome P450 and flavin-containing monooxygenase enzymes are responsible for differential oxidation of the anti-thyroid-cancer drug vandetanib by human and rat hepatic microsomal systems. Environmental Toxicology and Pharmacology, 2020, 74, 103310.	4.0	11
9	Mutagenicity of acrylamide and glycidamide in human TP53 knock-in (Hupki) mouse embryo fibroblasts. Archives of Toxicology, 2020, 94, 4173-4196.	4.2	21
10	<i>In Vivo</i> Metabolism of Aristolochic Acid I and II in Rats Is Influenced by Their Coexposure. Chemical Research in Toxicology, 2020, 33, 2804-2818.	3.3	10
11	Enhanced DNA adduct formation by benzo[a]pyrene in human liver cells lacking cytochrome P450 oxidoreductase. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2020, 852, 503162.	1.7	11
12	<i>In vitro</i> mutagenicity of selected environmental carcinogens and their metabolites in MutaMouse FE1 lung epithelial cells. Mutagenesis, 2020, 35, 453-463.	2.6	4
13	Identification of Human Enzymes Oxidizing the Anti-Thyroid-Cancer Drug Vandetanib and Explanation of the High Efficiency of Cytochrome P450 3A4 in its Oxidation. International Journal of Molecular Sciences, 2019, 20, 3392.	4.1	13
14	Antagonistic Interactions between Benzo[a]pyrene and Fullerene (C60) in Toxicological Response of Marine Mussels. Nanomaterials, 2019, 9, 987.	4.1	20
15	Deletion of cytochrome P450 oxidoreductase enhances metabolism and DNA adduct formation of benzo[a]pyrene in Hepa1c1c7 cells. Mutagenesis, 2019, 34, 413-420.	2.6	3
16	The impact of p53 on aristolochic acid I-induced nephrotoxicity and DNA damage in vivo and in vitro. Archives of Toxicology, 2019, 93, 3345-3366.	4.2	16
17	An integrated approach to determine interactive genotoxic and global gene expression effects of multiwalled carbon nanotubes (MWCNTs) and benzo[a]pyrene (BaP) on marine mussels: evidence of reverse â€Trojan Horse' effects. Nanotoxicology, 2019, 13, 1324-1343.	3.0	9
18	Application of hepatic cytochrome b/P450 reductase null (HBRN) mice to study the role of cytochrome b in the cytochrome P450-mediated bioactivation of the anticancer drug ellipticine. Toxicology and Applied Pharmacology, 2019, 366, 64-74.	2.8	2

#	Article	IF	CITATIONS
19	Bulky DNA adducts, microRNA profiles, and lipid biomarkers in Norwegian tunnel finishing workers occupationally exposed to diesel exhaust. Occupational and Environmental Medicine, 2019, 76, 10-16.	2.8	15
20	Impact of p53 function on the sulfotransferaseâ€mediated bioactivation of the alkylated polycyclic aromatic hydrocarbon 1â€hydroxymethylpyrene in vitro. Environmental and Molecular Mutagenesis, 2019, 60, 752-758.	2.2	6
21	Balkan Endemic Nephropathy and the Causative Role of Aristolochic Acid. Seminars in Nephrology, 2019, 39, 284-296.	1.6	48
22	Co-exposure to polystyrene plastic beads and polycyclic aromatic hydrocarbon contaminants in fish gill (RTgill-W1) and intestinal (RTgutGC) epithelial cells derived from rainbow trout (Oncorhynchus) Tj ETQq0 0 C) rgB∃ /Ov€	erl as k 10 Tf 5
23	A Compendium of Mutational Signatures of Environmental Agents. Cell, 2019, 177, 821-836.e16.	28.9	437
24	Ellipticine-loaded apoferritin nanocarrier retains DNA adduct-based cytochrome P450-facilitated toxicity in neuroblastoma cells. Toxicology, 2019, 419, 40-54.	4.2	12
25	Characterising Mutational Spectra of Carcinogens in the Tumour Suppressor Gene TP53 Using Human TP53 Knock-in (Hupki) Mouse Embryo Fibroblasts. Methods and Protocols, 2019, 2, 85.	2.0	6
26	The Impact of p53 on Aristolochic Acid I-Induced Gene Expression In Vivo. International Journal of Molecular Sciences, 2019, 20, 6155.	4.1	7
27	The impact of chemotherapeutic drugs on the CYP1A1-catalysed metabolism of the environmental carcinogen benzo[a]pyrene: Effects in human colorectal HCT116 TP53(+/+), TP53(+/â^') and TP53(â^'/â^') cells. Toxicology, 2018, 398-399, 1-12.	4.2	16
28	Exposure to endocrine disruptors 17alpha-ethinylestradiol and estradiol influences cytochrome P450 1A1-mediated genotoxicity of benzo[a]pyrene and expression of this enzyme in rats. Toxicology, 2018, 400-401, 48-56.	4.2	12
29	Differentiationâ€associated urothelial cytochrome P450 oxidoreductase predicates the xenobioticâ€metabolizing activity of "luminal―muscleâ€invasive bladder cancers. Molecular Carcinogenesis, 2018, 57, 606-618.	2.7	17
30	Cytochrome b 5 impacts on cytochrome P450-mediated metabolism of benzo[a]pyrene and its DNA adduct formation: studies in hepatic cytochrome b 5 /P450 reductase null (HBRN) mice. Archives of Toxicology, 2018, 92, 1625-1638.	4.2	26
31	Genotoxicity of fine and coarse fraction ambient particulate matter in immortalised normal (TT1) and cancerâ€derived (A549) alveolar epithelial cells. Environmental and Molecular Mutagenesis, 2018, 59, 290-301.	2.2	18
32	Benchmark dose analyses of multiple genetic toxicity endpoints permit robust, cross-tissue comparisons of MutaMouse responses to orally delivered benzo[a]pyrene. Archives of Toxicology, 2018, 92, 967-982.	4.2	32
33	Role of Human Aldo-Keto Reductases in the Metabolic Activation of the Carcinogenic Air Pollutant 3-Nitrobenzanthrone. Chemical Research in Toxicology, 2018, 31, 1277-1288.	3.3	8
34	Carcinogen-DNA Adducts. , 2018, , 282-282.		0
35	The impact of p53 function on the metabolic activation of the carcinogenic air pollutant 3-nitrobenzanthrone and its metabolites 3-aminobenzanthrone and N-hydroxy-3-aminobenzanthrone in human cells. Mutagenesis, 2018, 33, 311-321.	2.6	9
36	The Histone Deacetylase Inhibitor Valproic Acid Exerts a Synergistic Cytotoxicity with the DNA-Damaging Drug Ellipticine in Neuroblastoma Cells. International Journal of Molecular Sciences, 2018, 19, 164.	4.1	19

#	Article	IF	CITATIONS
37	Hepatic DNA damage in harbour porpoises (<i>Phocoena phocoena</i>) stranded along the English and Welsh coastlines. Environmental and Molecular Mutagenesis, 2018, 59, 613-624.	2.2	8
38	The role of cytochrome P450 enzymes in carcinogen activation and detoxication: an in vivo–in vitro paradox. Carcinogenesis, 2018, 39, 851-859.	2.8	43
39	The Role of Cytochrome P450 Enzymes in Carcinogen Metabolism: Lessons Learned From Studies With Benzo[<i>a</i>]pyrene and Aristolochic Acid. , 2018, , 21-68.		2
40	Cytochrome b 5 plays a dual role in the reaction cycle of cytochrome P450 3A4 during oxidation of the anticancer drug ellipticine. Monatshefte Für Chemie, 2017, 148, 1983-1991.	1.8	15
41	Comparison of human cytochrome P450 1A1-catalysed oxidation of benzo[a]pyrene in prokaryotic and eukaryotic expression systems. Monatshefte FÃ1⁄4r Chemie, 2017, 148, 1959-1969.	1.8	10
42	Comparison of the oxidation of carcinogenic aristolochic acid I and II by microsomal cytochromes P450 in vitro: experimental and theoretical approaches. Monatshefte Für Chemie, 2017, 148, 1971-1981.	1.8	14
43	Nutlinâ€3a selects for cells harbouring <scp><i>TP</i></scp> <i>53</i> mutations. International Journal of Cancer, 2017, 140, 877-887.	5.1	22
44	Impact of genetic modulation of SULT1A enzymes on DNA adduct formation by aristolochic acids and 3-nitrobenzanthrone. Archives of Toxicology, 2017, 91, 1957-1975.	4.2	22
45	DNA Adducts Formed by Aristolochic Acid Are Unique Biomarkers of Exposure and Explain the Initiation Phase of Upper Urothelial Cancer. International Journal of Molecular Sciences, 2017, 18, 2144.	4.1	67
46	Quantitative relationships between <i>lacZ</i> mutant frequency and DNA adduct frequency in Mutaâ,,¢Mouse tissues and cultured cells exposed to 3-nitrobenzanthrone. Mutagenesis, 2017, 32, gew067.	2.6	11
47	Assessing the impact of Benzo[a]pyrene on Marine Mussels: Application of a novel targeted low density microarray complementing classical biomarker responses. PLoS ONE, 2017, 12, e0178460.	2.5	53
48	Active Site Mutations as a Suitable Tool Contributing to Explain a Mechanism of Aristolochic Acid I Nitroreduction by Cytochromes P450 1A1, 1A2 and 1B1. International Journal of Molecular Sciences, 2016, 17, 213.	4.1	15
49	Oral exposure to commercially available coal tarâ€based pavement sealcoat induces murine genetic damage and mutations. Environmental and Molecular Mutagenesis, 2016, 57, 535-545.	2.2	8
50	Heterologous expression of human cytochrome P450 2S1 in Escherichia coli and investigation of its role in metabolism of benzo[a]pyrene and ellipticine. Monatshefte Für Chemie, 2016, 147, 881-888.	1.8	4
51	TP53 and lacZ mutagenesis induced by 3-nitrobenzanthrone in Xpa-deficient human TP53 knock-in mouse embryo fibroblasts. DNA Repair, 2016, 39, 21-33.	2.8	13
52	Lagos lagoon sediment organic extracts and polycyclic aromatic hydrocarbons induce embryotoxic, teratogenic and genotoxic effects in Danio rerio (zebrafish) embryos. Environmental Science and Pollution Research, 2016, 23, 14489-14501.	5.3	47
53	The impact of individual cytochrome P450 enzymes on oxidative metabolism of benzo[<i>a</i>]pyrene in human livers. Environmental and Molecular Mutagenesis, 2016, 57, 229-235.	2.2	56
54	Metabolic activation of 2â€aminoâ€1â€methylâ€6â€phenylimidazo [4,5â€ <i>b</i>]pyridine and <scp>DNAadduct formation depends on p53: Studies in <scp><i>T</i></scp><i>rp53</i>(i>(+/+),<scp><i>T</i></scp><i>rp53</i>(i>(+/â^') and <scp><i>T</i></scp><i>rp53</i>(i>(a^')â^') mice. International Journal of Cancer, 2016, 138, 976-982.</scp>	> 5.1	17

Volker M. Arlt

#	Article	IF	CITATIONS
55	Balkan endemic nephropathy: an update on its aetiology. Archives of Toxicology, 2016, 90, 2595-2615.	4.2	97
56	NADH:Cytochrome <i>b</i> ₅ Reductase and Cytochrome <i>b</i> ₅ Can Act as Sole Electron Donors to Human Cytochrome P450 1A1-Mediated Oxidation and DNA Adduct Formation by Benzo[<i>a</i>]pyrene. Chemical Research in Toxicology, 2016, 29, 1325-1334.	3.3	31
57	NADPH- and NADH-dependent metabolism of and DNA adduct formation by benzo[a]pyrene catalyzed with rat hepatic microsomes and cytochrome P450 1A1. Monatshefte Für Chemie, 2016, 147, 847-855.	1.8	12
58	Tissue-specific in vivo genetic toxicity of nine polycyclic aromatic hydrocarbons assessed using the Mutaâ,,¢Mouse transgenic rodent assay. Toxicology and Applied Pharmacology, 2016, 290, 31-42.	2.8	52
59	The application of the comet assay to assess the genotoxicity of environmental pollutants in the nematode Caenorhabditis elegans. Environmental Toxicology and Pharmacology, 2016, 45, 356-361.	4.0	28
60	Carcinogenic polycyclic aromatic hydrocarbons induce CYP1A1 in human cells via a p53-dependent mechanism. Archives of Toxicology, 2016, 90, 291-304.	4.2	74
61	The impact of p53 on DNA damage and metabolic activation of the environmental carcinogen benzo[a]pyrene: effects in Trp53(+/+), Trp53(+/–) and Trp53(â~'/â~') mice. Archives of Toxicology, 2016, 90, 839-851.	4.2	36
62	Induced expression of microsomal cytochrome b 5 determined at mRNA and protein levels in rats exposed to ellipticine, benzo[a]pyrene, and 1-phenylazo-2-naphthol (Sudan I). Monatshefte Für Chemie, 2016, 147, 897-904.	1.8	3
63	Induction of cytochromes P450 1A1 and 1A2 suppresses formation of DNA adducts by carcinogenic aristolochic acid I in rats in vivo. Toxicology, 2016, 344-346, 7-18.	4.2	22
64	Blocking TGF-β Signaling Pathway Preserves Mitochondrial Proteostasis and Reduces Early Activation of PDGFRβ+ Pericytes in Aristolochic Acid Induced Acute Kidney Injury in Wistar Male Rats. PLoS ONE, 2016, 11, e0157288.	2.5	18
65	A Mechanism of O-Demethylation of Aristolochic Acid I by Cytochromes P450 and Their Contributions to This Reaction in Human and Rat Livers: Experimental and Theoretical Approaches. International Journal of Molecular Sciences, 2015, 16, 27561-27575.	4.1	32
66	Pulmonary Inflammation Impacts on CYP1A1-Mediated Respiratory Tract DNA Damage Induced by the Carcinogenic Air Pollutant Benzo[<i>a</i>]pyrene. Toxicological Sciences, 2015, 146, 213-225.	3.1	68
67	TP53 mutations induced by BPDE in Xpa-WT and Xpa-Null human TP53 knock-in (Hupki) mouse embryo fibroblasts. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 773, 48-62.	1.0	39
68	The influence of ochratoxin A on DNA adduct formation by the carcinogen aristolochic acid in rats. Archives of Toxicology, 2015, 89, 2141-2158.	4.2	22
69	Bacillus Calmette-Guerin therapy in non-muscle-invasive bladder carcinoma after renal transplantation for end-stage aristolochic acid nephropathy. Transplant International, 2015, 28, 199-205.	1.6	23
70	The Hepatic Reductase Null (HRN ^{â,,¢}) and Reductase Conditional Null (RCN) mouse models as suitable tools to study metabolism, toxicity and carcinogenicity of environmental pollutants. Toxicology Research, 2015, 4, 548-562.	2.1	13
71	The Anticancer Drug Ellipticine Activated with Cytochrome P450 Mediates DNA Damage Determining Its Pharmacological Efficiencies: Studies with Rats, Hepatic Cytochrome P450 Reductase Null (HRNâ"¢) Mice and Pure Enzymes. International Journal of Molecular Sciences, 2015, 16, 284-306.	4.1	24
72	The genome as a record of environmental exposure. Mutagenesis, 2015, 30, gev073.	2.6	174

#	Article	IF	CITATIONS
73	Comparison of the metabolic activation of environmental carcinogens in mouse embryonic stem cells and mouse embryonic fibroblasts. Toxicology in Vitro, 2015, 29, 34-43.	2.4	16
74	Knockout and humanized mice as suitable tools to identify enzymes metabolizing the human carcinogen aristolochic acid. Xenobiotica, 2014, 44, 135-145.	1.1	26
75	Mechanisms of Enzyme-Catalyzed Reduction of Two Carcinogenic Nitro-Aromatics, 3-Nitrobenzanthrone and Aristolochic Acid I: Experimental and Theoretical Approaches. International Journal of Molecular Sciences, 2014, 15, 10271-10295.	4.1	34
76	The influence of dicoumarol on the bioactivation of the carcinogen aristolochic acid I in rats. Mutagenesis, 2014, 29, 189-200.	2.6	16
77	Exceptionally long-term persistence of DNA adducts formed by carcinogenic aristolochic acid I in renal tissue from patients with aristolochic acid nephropathy. International Journal of Cancer, 2014, 135, 502-507.	5.1	80
78	The effect of aristolochic acid I on expression of NAD(P)H:quinone oxidoreductase in mice and rats—A comparative study. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2014, 768, 1-7.	1.7	18
79	Cytochrome b5 and epoxide hydrolase contribute to benzo[a]pyrene-DNA adduct formation catalyzed by cytochrome P450 1A1 under low NADPH:P450 oxidoreductase conditions. Toxicology, 2014, 318, 1-12.	4.2	41
80	32P-Postlabeling Analysis of DNA Adducts. Methods in Molecular Biology, 2014, 1105, 127-138.	0.9	44
81	Modulation of human cytochrome P450 1A1-mediated oxidation of benzo[a]pyrene by NADPH:cytochrome P450 oxidoreductase and cytochrome b5. Neuroendocrinology Letters, 2014, 35 Suppl 2, 105-13.	0.2	9
82	The relationship between DNA adduct formation by benzo[a]pyrene and expression of its activation enzyme cytochrome P450 1A1 in rat. Environmental Toxicology and Pharmacology, 2013, 36, 989-996.	4.0	46
83	Evaluation of the cytotoxicity and genotoxicity of aristolochic acid I – A component of Aristolochiaceae plant extracts used in homeopathy. Environmental Toxicology and Pharmacology, 2013, 35, 325-334.	4.0	20
84	The Epidemiology, Diagnosis, and Management of Aristolochic Acid Nephropathy. Annals of Internal Medicine, 2013, 158, 469.	3.9	142
85	32P-Postlabeling Analysis of DNA Adducts. Methods in Molecular Biology, 2013, 1044, 389-401.	0.9	19
86	Enzymes Metabolizing Aristolochic Acid and their Contribution to the Development of Aristolochic Acid Nephropathy and Urothelial Cancer. Current Drug Metabolism, 2013, 14, 695-705.	1.2	48
87	The effect of benzo[a]pyrene on metabolic activation of anticancer drug ellipticine in mice. Neuroendocrinology Letters, 2013, 34 Suppl 2, 43-54.	0.2	2
88	Bioactivation versus Detoxication of the Urothelial Carcinogen Aristolochic Acid I by Human Cytochrome P450 1A1 and 1A2. Toxicological Sciences, 2012, 125, 345-358.	3.1	57
89	Probenecid prevents acute tubular necrosis in a mouse model of aristolochic acid nephropathy. Kidney International, 2012, 82, 1105-1113.	5.2	71
90	Exposure to benzo[a]pyrene of Hepatic Cytochrome P450 Reductase Null (HRN) and P450 Reductase Conditional Null (RCN) mice: Detection of benzo[a]pyrene diol epoxide-DNA adducts by immunohistochemistry and 32P-postlabelling. Toxicology Letters, 2012, 213, 160-166.	0.8	31

Volker M. Arlt

#	Article	IF	CITATIONS
91	Merging nano-genotoxicology with eco-genotoxicology: An integrated approach to determine interactive genotoxic and sub-lethal toxic effects of C60 fullerenes and fluoranthene in marine mussels, Mytilus sp Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2012, 745, 92-103.	1.7	84
92	Evidence of exposure to aristolochic acid in patients with urothelial cancer from a Balkan endemic nephropathy region of Romania. Environmental and Molecular Mutagenesis, 2012, 53, 636-641.	2.2	51
93	Polycyclic aromatic hydrocarbons as skin carcinogens: Comparison of benzo[a]pyrene, dibenzo[def,p]chrysene and three environmental mixtures in the FVB/N mouse. Toxicology and Applied Pharmacology, 2012, 264, 377-386.	2.8	140
94	NAD(P)H:quinone oxidoreductase expression in Cyp1a-knockout and CYP1A-humanized mouse lines and its effect on bioactivation of the carcinogen aristolochic acid I. Toxicology and Applied Pharmacology, 2012, 265, 360-367.	2.8	24
95	Subchronic Oral Exposure to Benzo(a)pyrene Leads to Distinct Transcriptomic Changes in the Lungs That Are Related to Carcinogenesis. Toxicological Sciences, 2012, 129, 213-224.	3.1	44
96	Metabolic activation of diesel exhaust carcinogens in primary and immortalized human <i>TP53</i> knockâ€in (Hupki) mouse embryo fibroblasts. Environmental and Molecular Mutagenesis, 2012, 53, 207-217.	2.2	18
97	ACBâ€PCR measurement of Hâ€ <i>ras</i> codon 61 CAA→CTA mutation provides an early indication of aristolochic acid I carcinogenic effect in tumor target tissues. Environmental and Molecular Mutagenesis, 2012, 53, 495-504.	2.2	22
98	Role of P450 1A1 and P450 1A2 in Bioactivation versus Detoxication of the Renal Carcinogen Aristolochic Acid I: Studies in <i>Cyp1a1(â^'/â^')</i> , <i>Cyp1a2(â^'/â^')</i> , and <i>Cyp1a1/1a2(â^'/â^')</i> Chemical Research in Toxicology, 2011, 24, 1710-1719.	3.3	39
99	Effect of Hepatic Cytochrome P450 (P450) Oxidoreductase Deficiency on 2-Amino-1-methyl-6-phenylimidazo[4,5- <i>b</i>]pyridine-DNA Adduct Formation in P450 Reductase Conditional Null Mice. Drug Metabolism and Disposition, 2011, 39, 2169-2173.	3.3	15
100	Induction of biotransformation enzymes by the carcinogenic air-pollutant 3-nitrobenzanthrone in liver, kidney and lung, after intra-tracheal instillation in rats. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2011, 720, 34-41.	1.7	19
101	Theoretical investigations on the formation of nitrobenzanthrone-DNA Adducts. Organic and Biomolecular Chemistry, 2011, 9, 6100.	2.8	11
102	Whole body exposure of mice to secondhand smoke induces dose-dependent and persistent promutagenic DNA adducts in the lung. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 716, 92-98.	1.0	11
103	Aristolochic acid-induced carcinogenesis examined by ACB-PCR quantification of H-Ras and K-Ras mutant fraction. Mutagenesis, 2011, 26, 619-628.	2.6	31
104	The human carcinogen aristolochic acid i is activated to form DNA adducts by human NAD(P)H:quinone oxidoreductase without the contribution of acetyltransferases or sulfotransferases. Environmental and Molecular Mutagenesis, 2011, 52, 448-459.	2.2	42
105	Gene expression changes induced by the human carcinogen aristolochic acid I in renal and hepatic tissue of mice. International Journal of Cancer, 2011, 128, 21-32.	5.1	46
106	Role of Cytochromes P450 1A1/2 in Detoxication and Activation of Carcinogenic Aristolochic Acid I: Studies with the Hepatic NADPH:Cytochrome P450 Reductase Null (HRN) Mouse Model. Toxicological Sciences, 2011, 121, 43-56.	3.1	56
107	Comparison of activation of aristolochic acid I and II with NADPH:quinone oxidoreductase, sulphotransferases and N-acetyltranferases. Neuroendocrinology Letters, 2011, 32 Suppl 1, 57-70.	0.2	16
108	Constitutive expression of bioactivating enzymes in normal human prostate suggests a capability to activate proâ€carcinogens to DNAâ€damaging metabolites. Prostate, 2010, 70, 1586-1599.	2.3	35

#	Article	IF	CITATIONS
109	Linking environmental carcinogen exposure to <i>TP53</i> mutations in human tumours using the human <i>TP53</i> knockâ€in (Hupki) mouse model. FEBS Journal, 2010, 277, 2567-2583.	4.7	57
110	Mechanisms of the Different DNA Adduct Forming Potentials of the Urban Air Pollutants 2-Nitrobenzanthrone and Carcinogenic 3-Nitrobenzanthrone. Chemical Research in Toxicology, 2010, 23, 1192-1201.	3.3	36
111	Linking environmental carcinogen exposure to TP53 mutations in human tumours using the human TP53 knock-in (Hupki) mouse model. FEBS Journal, 2010, 277, 2567-2583.	4.7	42
112	<i>TP53</i> mutation signature supports involvement of aristolochic acid in the aetiology of endemic nephropathyâ€associated tumours. International Journal of Cancer, 2009, 124, 987-990.	5.1	78
113	Molecular evidence for an involvement of organic anion transporters (OATs) in aristolochic acid nephropathy. Toxicology, 2009, 264, 74-79.	4.2	68
114	Quantification of 3-Nitrobenzanthrone-DNA Adducts Using Online Column-Switching HPLC-Electrospray Tandem Mass Spectrometry. Chemical Research in Toxicology, 2009, 22, 1860-1868.	3.3	23
115	3-Aminobenzanthrone, a human metabolite of the carcinogenic environmental pollutant 3-nitrobenzanthrone, induces biotransformation enzymes in rat kidney and lung. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2009, 676, 93-101.	1.7	10
116	Genotoxicity: damage to DNA and its consequences. Exs, 2009, 99, 87-110.	1.4	80
117	THE ROLE OF BIOTRANSFORMATION ENZYMES IN THE DEVELOPMENT OF RENAL INJURY AND UROTHELIAL CANCER CAUSED BY ARISTOLOCHIC ACID: URGENT QUESTIONS AND DIFFICULT ANSWERS. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2009, 153. 5-11.	0.6	20
118	Chemical and molecular basis of the carcinogenicity of Aristolochia plants. Current Opinion in Drug Discovery & Development, 2009, 12, 141-8.	1.9	37
119	Mutagenic potential of nitrenium ions of nitrobenzanthrones: Correlation between theory and experiment. Environmental and Molecular Mutagenesis, 2008, 49, 659-667.	2.2	21
120	The environmental pollutant and carcinogen 3-nitrobenzanthrone induces cytochrome P450 1A1 and NAD(P)H:quinone oxidoreductase in rat lung and kidney, thereby enhancing its own genotoxicity. Toxicology, 2008, 247, 11-22.	4.2	30
121	Role of hepatic cytochromes P450 in bioactivation of the anticancer drug ellipticine: Studies with the hepatic NADPH:Cytochrome P450 reductase null mouse. Toxicology and Applied Pharmacology, 2008, 226, 318-327.	2.8	44
122	Gene expression profiles modulated by the human carcinogen aristolochic acid I in human cancer cells and their dependence on TP53. Toxicology and Applied Pharmacology, 2008, 232, 86-98.	2.8	32
123	Ellipticine and benzo(a)pyrene increase their own metabolic activation via modulation of expression and enzymatic activity of cytochromes P450 1A1 and 1A2. Interdisciplinary Toxicology, 2008, 1, 160-168.	1.0	8
124	Metabolic activation of carcinogenic aristolochic acid, a risk factor for Balkan endemic nephropathy. Mutation Research - Reviews in Mutation Research, 2008, 658, 55-67.	5.5	103
125	Genotoxicity of 3-nitrobenzanthrone and 3-aminobenzanthrone in Mutaâ,,¢Mouse and lung epithelial cells derived from Mutaâ,,¢Mouse. Mutagenesis, 2008, 23, 483-490.	2.6	36
126	Mutagenicity and DNA Adduct Formation by the Urban Air Pollutant 2-Nitrobenzanthrone. Toxicological Sciences, 2007, 98, 445-457.	3.1	42

#	Article	lF	CITATIONS
127	Aristolochic acid mutagenesis: molecular clues to the aetiology of Balkan endemic nephropathy-associated urothelial cancer. Carcinogenesis, 2007, 28, 2253-2261.	2.8	159
128	Metabolic activation of benzo[a]pyrene in vitro by hepatic cytochrome P450 contrasts with detoxification in vivo: experiments with hepatic cytochrome P450 reductase null mice. Carcinogenesis, 2007, 29, 656-665.	2.8	115
129	AHR- and DNA-Damage-Mediated Gene Expression Responses Induced by Benzo(<i>a</i>)pyrene in Human Cell Lines. Chemical Research in Toxicology, 2007, 20, 1797-1810.	3.3	86
130	The 32P-postlabeling assay for DNA adducts. Nature Protocols, 2007, 2, 2772-2781.	12.0	222
131	Different mechanisms involved in apoptosis following exposure to benzo[a]pyrene in F258 and Hepa1c1c7 cells. Chemico-Biological Interactions, 2007, 167, 41-55.	4.0	61
132	Bioactivation of 3-aminobenzanthrone, a human metabolite of the environmental pollutant 3-nitrobenzanthrone: evidence for DNA adduct formation mediated by cytochrome P450 enzymes and peroxidases. Cancer Letters, 2006, 234, 220-231.	7.2	55
133	DNA adduct formation and mutation induction by aristolochic acid in rat kidney and liver. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 602, 83-91.	1.0	101
134	Identification of three major DNA adducts formed by the carcinogenic air pollutant 3-nitrobenzanthrone in rat lung at the C8 and N2 position of guanine and at the N6 position of adenine. International Journal of Cancer, 2006, 118, 2139-2146.	5.1	76
135	THE ENVIRONMENTAL POLLUTANT AND CARCINOGEN 3-NITROBENZANTHRONE AND ITS HUMAN METABOLITE 3-AMINOBENZANTHRONE ARE POTENT INDUCERS OF RAT HEPATIC CYTOCHROMES P450 1A1 AND -1A2 AND NAD(P)H:QUINONE OXIDOREDUCTASE. Drug Metabolism and Disposition, 2006, 34, 1398-1405.	3.3	51
136	Detection of Herba Aristolochia Mollissemae in a patient with unexplained nephropathy. American Journal of Kidney Diseases, 2005, 45, 407-410.	1.9	32
137	Environmental Pollutant and Potent Mutagen 3-Nitrobenzanthrone Forms DNA Adducts after Reduction by NAD(P)H:Quinone Oxidoreductase and Conjugation by Acetyltransferases and Sulfotransferases in Human Hepatic Cytosols. Cancer Research, 2005, 65, 2644-2652.	0.9	118
138	Early proximal tubule injury in experimental aristolochic acid nephropathy: functional and histological studies. Nephrology Dialysis Transplantation, 2005, 20, 2321-2332.	0.7	110
139	3-Nitrobenzanthrone, a potential human cancer hazard in diesel exhaust and urban air pollution: a review of the evidence. Mutagenesis, 2005, 20, 399-410.	2.6	116
140	Synthesis, Characterization, and 32P-Postlabeling Analysis of DNA Adducts Derived from the Environmental Contaminant 3-Nitrobenzanthrone. Chemical Research in Toxicology, 2005, 18, 1056-1070.	3.3	20
141	DNA adducts and p53 mutations in a patient with aristolochic acid-associated nephropathy. American Journal of Kidney Diseases, 2004, 43, e18.1-e18.7.	1.9	115
142	DNA adducts and mutagenic specificity of the ubiquitous environmental pollutant 3-nitrobenzanthrone in Muta Mouse. Environmental and Molecular Mutagenesis, 2004, 43, 186-195.	2.2	63
143	Aristolochic acid (AA)â€DNA adduct as marker of AA exposure and risk factor for AA nephropathyâ€associated cancer. International Journal of Cancer, 2004, 111, 977-980.	5.1	56
144	3-Aminobenzanthrone, a Human Metabolite of the Environmental Pollutant 3-Nitrobenzanthrone, Forms DNA Adducts after Metabolic Activation by Human and Rat Liver Microsomes:  Evidence for Activation by Cytochrome P450 1A1 and P450 1A2. Chemical Research in Toxicology, 2004, 17, 1092-1101.	3.3	62

#	Article	IF	CITATIONS
145	Effects of dexfenfluramine on aristolochic acid nephrotoxicity in a rat model for Chinese-herb nephropathy. Archives of Toxicology, 2003, 77, 218-226.	4.2	29
146	Activation of 3-nitrobenzanthrone and its metabolites by human acetyltransferases, sulfotransferases and cytochrome P450 expressed in Chinese hamster V79 cells. International Journal of Cancer, 2003, 105, 583-592.	5.1	75
147	Invasive urothelial carcinoma after exposure to Chinese herbal medicine containing aristolochic acid may occur without severe renal failure. Nephrology Dialysis Transplantation, 2003, 18, 426-428.	0.7	66
148	Human enzymes involved in the metabolic activation of the environmental contaminant 3-nitrobenzanthrone: evidence for reductive activation by human NADPH:cytochrome p450 reductase. Cancer Research, 2003, 63, 2752-61.	0.9	61
149	Metabolic activation of the environmental contaminant 3-nitrobenzanthrone by human acetyltransferases and sulfotransferase. Carcinogenesis, 2002, 23, 1937-1945.	2.8	112
150	Aristolochic acid as a probable human cancer hazard in herbal remedies: a review. Mutagenesis, 2002, 17, 265-277.	2.6	433
151	Covalent binding of the anticancer drug ellipticine to DNA in V79 cells transfected with human cytochrome P450 enzymes. Biochemical Pharmacology, 2002, 64, 289-295.	4.4	53
152	Is aristolochic acid a risk factor for Balkan endemic nephropathyâ€associated urothelial cancer?. International Journal of Cancer, 2002, 101, 500-502.	5.1	89
153	Analyses of DNA adducts formed by ochratoxin A and aristolochic acid in patients with Chinese herbs nephropathy. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2001, 494, 143-150.	1.7	82
154	Sequence-specific detection of aristolochic acid-DNA adducts in the human p53 gene by terminal transferase-dependent PCR. Carcinogenesis, 2001, 22, 133-140.	2.8	85
155	Aristolochic acid impedes endocytosis and induces DNA adducts in proximal tubule cells. Kidney International, 2001, 60, 1332-1342.	5.2	87
156	DNA adduct formation by the ubiquitous environmental contaminant 3-nitrobenzanthrone in rats determined by32P-postlabeling. International Journal of Cancer, 2001, 93, 450-454.	5.1	75
157	Aristolochic acid nephropathy in a Chinese patient: Time to abandon the term "Chinese herbs nephropathy�. American Journal of Kidney Diseases, 2001, 38, E26.	1.9	92
158	Urothelial Carcinoma Associated with the Use of a Chinese Herb (<i>Aristolochia fangchi</i>). New England Journal of Medicine, 2000, 342, 1686-1692.	27.0	944