Xiao-San Luo

List of Publications by Citations

Source: https://exaly.com/author-pdf/9247330/xiao-san-luo-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

55 2,446 25 49 g-index

57 2,927 7 ext. papers ext. citations avg, IF 5.27

L-index

#	Paper	IF	Citations
55	Trace metal contamination in urban soils of China. Science of the Total Environment, 2012, 421-422, 17-	·30 _{10.2}	353
54	Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. <i>Science of the Total Environment</i> , 2012 , 424, 88-96	10.2	303
53	Distribution, availability, and sources of trace metals in different particle size fractions of urban soils in Hong Kong: Implications for assessing the risk to human health. <i>Environmental Pollution</i> , 2011 , 159, 1317-26	9.3	202
52	Source identification and apportionment of heavy metals in urban soil profiles. <i>Chemosphere</i> , 2015 , 127, 152-7	8.4	179
51	The mobility, bioavailability, and human bioaccessibility of trace metals in urban soils of Hong Kong. <i>Applied Geochemistry</i> , 2012 , 27, 995-1004	3.5	114
50	Urban soil and human health: a review. European Journal of Soil Science, 2018, 69, 196-215	3.4	94
49	Inconsistency and comprehensiveness of risk assessments for heavy metals in urban surface sediments. <i>Chemosphere</i> , 2011 , 85, 1080-7	8.4	94
48	Seasonal Disparities in Airborne Bacteria and Associated Antibiotic Resistance Genes in PM2.5 between Urban and Rural Sites. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 74-79	11	87
47	Contamination and source differentiation of Pb in park soils along an urban-rural gradient in Shanghai. <i>Environmental Pollution</i> , 2011 , 159, 3536-44	9.3	82
46	Bacteria and Antibiotic Resistance Genes (ARGs) in PM from China: Implications for Human Exposure. <i>Environmental Science & Environmental Science & En</i>	10.3	66
45	Effect of cations on copper toxicity to wheat root: implications for the biotic ligand model. <i>Chemosphere</i> , 2008 , 73, 401-6	8.4	64
44	Adsorption and cosorption of cadmium and glyphosate on two soils with different characteristics. <i>Chemosphere</i> , 2004 , 57, 1237-44	8.4	60
43	Cell membrane surface potential (psi0) plays a dominant role in the phytotoxicity of copper and arsenate. <i>Plant Physiology</i> , 2008 , 148, 2134-43	6.6	55
42	Impacts of atmospheric particulate matter pollution on environmental biogeochemistry of trace metals in soil-plant system: A review. <i>Environmental Pollution</i> , 2019 , 255, 113138	9.3	50
41	Solid/solution partitioning and speciation of heavy metals in the contaminated agricultural soils around a copper mine in eastern Nanjing city, China. <i>Journal of Hazardous Materials</i> , 2006 , 131, 19-27	12.8	49
40	Airborne particulate matter pollution in urban China: a chemical mixture perspective from sources to impacts. <i>National Science Review</i> , 2017 , 4, 593-610	10.8	48
39	Summer-winter differences of PM toxicity to human alveolar epithelial cells (A549) and the roles of transition metals. <i>Ecotoxicology and Environmental Safety</i> , 2018 , 165, 505-509	7	43

38	Evaluation of zinc oxide nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 6026-6035	5.1	41
37	Effects of Zn-complexes on zinc uptake by wheat (Triticum aestivum) roots: a comprehensive consideration of physical, chemical and biological processes on biouptake. <i>Plant and Soil</i> , 2009 , 316, 177	4.32	33
36	Subcellular distribution of Cd and Pb in earthworm Eisenia fetida as affected by Ca2+ ions and Cd-Pb interaction. <i>Ecotoxicology and Environmental Safety</i> , 2008 , 71, 632-7	7	32
35	Deciphering source contributions of trace metal contamination in urban soil, road dust, and foliar dust of Guangzhou, southern China. <i>Science of the Total Environment</i> , 2019 , 695, 133596	10.2	30
34	Health risk-oriented source apportionment of PM-associated trace metals. <i>Environmental Pollution</i> , 2020 , 262, 114655	9.3	28
33	Pulmonary bioaccessibility of trace metals in PM from different megacities simulated by lung fluid extraction and DGT method. <i>Chemosphere</i> , 2019 , 218, 915-921	8.4	28
32	Effect of major cations and pH on the acute toxicity of cadmium to the earthworm Eisenia fetida: implications for the biotic ligand model approach. <i>Archives of Environmental Contamination and Toxicology</i> , 2008 , 55, 70-7	3.2	26
31	Seasonally varied cytotoxicity of organic components in PM from urban and industrial areas of a Chinese megacity. <i>Chemosphere</i> , 2019 , 230, 424-431	8.4	25
30	Mineral Dietary Supplement To Decrease Cadmium Relative Bioavailability in Rice Based on a Mouse Bioassay. <i>Environmental Science & Environmental Scie</i>	10.3	24
29	The foliar spray of Rhodopseudomonas palustris grown under Stevia residue extract promotes plant growth via changing soil microbial community. <i>Journal of Soils and Sediments</i> , 2016 , 16, 916-923	3.4	21
28	Barrier effects of remote high mountain on atmospheric metal transport in the eastern Tibetan Plateau. <i>Science of the Total Environment</i> , 2018 , 628-629, 687-696	10.2	19
27	Seasonal Levels, Sources, and Health Risks of Heavy Metals in Atmospheric PM2.5 from Four Functional Areas of Nanjing City, Eastern China. <i>Atmosphere</i> , 2019 , 10, 419	2.7	19
26	Spatio-temporal variations and factors of a provincial PM pollution in eastern China during 2013-2017 by geostatistics. <i>Scientific Reports</i> , 2019 , 9, 3613	4.9	18
25	Elevated CO and temperature increase grain oil concentration but their impacts on grain yield differ between soybean and maize grown in a temperate region. <i>Science of the Total Environment</i> , 2019 , 666, 405-413	10.2	16
24	Free cupric ions in contaminated agricultural soils around a copper mine in eastern Nanjing City, China. <i>Journal of Environmental Sciences</i> , 2006 , 18, 927-31	6.4	15
23	Inclusive development and agricultural adaptation to climate change. <i>Current Opinion in Environmental Sustainability</i> , 2017 , 24, 78-83	7.2	14
22	In-vitro human lung cell injuries induced by urban PM during a severe air pollution episode: Variations associated with particle components. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 206, 111	<i>4</i> 06	14
21	National pattern for heavy metal contamination of topsoil in remote farmland impacted by haze pollution in China. <i>Atmospheric Research</i> , 2016 , 170, 34-40	5.4	12

20	Biomonitoring trace element contamination impacted by atmospheric deposition in China's remote mountains. <i>Atmospheric Research</i> , 2019 , 224, 30-41	5.4	11
19	Seasonal characteristics and health risks of PM-bound organic pollutants in industrial and urban areas of a China megacity. <i>Journal of Environmental Management</i> , 2019 , 245, 273-281	7.9	10
18	Antagonistic Interactions between Arsenic, Lead, and Cadmium in the Mouse Gastrointestinal Tract and Their Influences on Metal Relative Bioavailability in Contaminated Soils. <i>Environmental Science & Eamp; Technology</i> , 2019 , 53, 14264-14272	10.3	10
17	In vitro assessments of bioaccessibility and bioavailability of PM trace metals in respiratory and digestive systems and their oxidative potential. <i>Journal of Hazardous Materials</i> , 2021 , 409, 124638	12.8	10
16	Evaluating the biotic ligand model for toxicity and the alleviation of toxicity in terms of cell membrane surface potential. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 1503-11	3.8	9
15	The cytotoxicity and genotoxicity of PM during a snowfall event in different functional areas of a megacity. <i>Science of the Total Environment</i> , 2020 , 741, 140267	10.2	8
14	Effects of elevated carbon dioxide on metal transport in soil-crop system: results from a field rice and wheat experiment. <i>Journal of Soils and Sediments</i> , 2019 , 19, 3742-3748	3.4	6
13	Geogenic nickel exposure from food consumption and soil ingestion: A bioavailability based assessment. <i>Environmental Pollution</i> , 2020 , 265, 114873	9.3	4
12	Effects of Irrigation Water Salinity on the Growth, Gas Exchange Parameters, and Ion Concentration of Hot Pepper Plants Modified by Leaching Fractions. <i>Hortscience: A Publication of the American Society for Hortcultural Science</i> , 2018 , 53, 1050-1055	2.4	4
11	Spatial Distribution and Source Apportionment of Agricultural Soil Heavy Metals in a Rapidly Developing Area in East China. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2021 , 106, 33-39	9 ^{2.7}	4
10	Isomerization and Degradation of Levoglucosan via the Photo-Fenton Process: Insights from Aqueous-Phase Experiments and Atmospheric Particulate Matter. <i>Environmental Science & Environmental Science & Technology</i> , 2020 , 54, 11789-11797	10.3	2
9	The Contrasting Effects of Alum-Treated Chicken Manures and KH2PO4 on Phosphorus Behavior in Soils. <i>Journal of Environmental Quality</i> , 2018 , 47, 345-352	3.4	2
8	Cadmium oral bioavailability is affected by calcium and phytate contents in food: Evidence from leafy vegetables in mice. <i>Journal of Hazardous Materials</i> , 2022 , 424, 127373	12.8	2
7	Biochar-Polylactic Acid Composite Accelerated Reductive Dechlorination of Hexachlorobenzene in Paddy Soils under Neutral pH Condition. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2021 , 106, 175-182	2.7	2
6	Sedimentary organic-13C revealed dispersal patterns of Spartina alterniflora intra- and inter-estuary in China. <i>Ecological Engineering</i> , 2015 , 85, 95-102	3.9	1
5	Environmental Biogeochemistry of Elements and Emerging Contaminants. <i>Journal of Chemistry</i> , 2018 , 2018, 1-2	2.3	1
4	Seasonal and areal variability in PM poses differential degranulation and pro-inflammatory effects on RBL-2H3 cells. <i>Chemosphere</i> , 2021 , 279, 130919	8.4	1
3	Insight into urban PM chemical composition and environmentally persistent free radicals attributed human lung epithelial cytotoxicity <i>Ecotoxicology and Environmental Safety</i> , 2022 , 234, 113356	7	1

LIST OF PUBLICATIONS

Overview and Research Progresses in Chemical Speciation and In Vitro Bioaccessibility Analyses of Airborne Particulate Trace Metals. *Current Pollution Reports*,1

7.6 0

Toxicity assessment and heavy metal components of inhalable particulate matters (PM2.5 & amp; PM10) during a dust storm invading the city. *Chemical Engineering Research and Design*, **2022**, 162, 859-8 ਇੱ

О