Cecilia W Lo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9247131/publications.pdf

Version: 2024-02-01

160 papers 9,695

³⁸⁷²⁰ 50 h-index

90 g-index

174 all docs

174 docs citations

times ranked

174

12015 citing authors

#	Article	IF	CITATIONS
1	Relationships Between Regional Cerebral Blood Flow and Neurocognitive Outcomes in Children and Adolescents With Congenital Heart Disease. Seminars in Thoracic and Cardiovascular Surgery, 2022, 34, 1285-1295.	0.4	15
2	Biallelic pathogenic variants in roundabout guidance receptor 1 associate with syndromic congenital anomalies of the kidney and urinary tract. Kidney International, 2022, 101, 1039-1053.	2.6	8
3	Genetic resiliency associated with dominant lethal TPM1 mutation causing atrial septal defect with high heritability. Cell Reports Medicine, 2022, 3, 100501.	3.3	O
4	Cerebellar and Prefrontal Structures Associated With Executive Functioning in Pediatric Patients With Congenital Heart Defects. Frontiers in Neurology, 2022, 13, 827780.	1.1	11
5	Novel Protein–Protein Interactions Highlighting the Crosstalk between Hypoplastic Left Heart Syndrome, Ciliopathies and Neurodevelopmental Delays. Genes, 2022, 13, 627.	1.0	1
6	Rare and Common Variants Uncover the Role of the Atria in Coarctation of the Aorta. Genes, 2022, 13, 636.	1.0	4
7	Uncompensated mitochondrial oxidative stress underlies heart failure in an iPSC-derived model of congenital heart disease. Cell Stem Cell, 2022, 29, 840-855.e7.	5.2	18
8	MO047: Biallelic pathogenic variants in ROBO1 associate with syndromic CAKUT. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	0
9	Proteolysis of fibrillin-2 microfibrils is essential for normal skeletal development. ELife, 2022, 11, .	2.8	13
10	Role of cilia in the pathogenesis of congenital heart disease. Seminars in Cell and Developmental Biology, 2021, 110, 2-10.	2.3	26
11	Differential effect of anesthetics on mucociliary clearance in vivo in mice. Scientific Reports, 2021, 11, 4896.	1.6	10
12	Mucociliary Clearance Scans Show Infants Undergoing Congenital Cardiac Surgery Have Poor Airway Clearance Function. Frontiers in Cardiovascular Medicine, 2021, 8, 652158.	1.1	1
13	Cardiovascular Development and Congenital Heart Disease Modeling in the Pig. Journal of the American Heart Association, 2021, 10, e021631.	1.6	21
14	Mechanisms of Impaired Lung Development and Ciliation in Mannosidase-1-Alpha-2 (Man1a2) Mutants. Frontiers in Physiology, 2021, 12, 658518.	1.3	2
15	Common deletion variants causing protocadherin-α deficiency contribute to the complex genetics of BAV and left-sided congenital heart disease. Human Genetics and Genomics Advances, 2021, 2, 100037.	1.0	7
16	Compatibility of a Thermoresponsive and Controlled Release System for Promoting Sinonasal Cilia Regeneration. Macromolecular Bioscience, 2021, 21, 2100277.	2.1	3
17	Gene-teratogen interactions influence the penetrance of birth defects by altering Hedgehog signaling strength. Development (Cambridge), 2021, 148, .	1.2	4
18	Mitochondrial Respiration Defects in Single-Ventricle Congenital Heart Disease. Frontiers in Cardiovascular Medicine, 2021, 8, 734388.	1.1	13

#	Article	IF	Citations
19	Cilia interactome with predicted protein–protein interactions reveals connections to Alzheimer's disease, aging and other neuropsychiatric processes. Scientific Reports, 2020, 10, 15629.	1.6	34
20	Biliary-Atresia-Associated Mannosidase-1-Alpha-2 Gene Regulates Biliary and Ciliary Morphogenesis and Laterality. Frontiers in Physiology, 2020, $11,538701$.	1.3	13
21	A Membrane-Tethered Ubiquitination Pathway Regulates Hedgehog Signaling and Heart Development. Developmental Cell, 2020, 55, 432-449.e12.	3.1	21
22	Rapid Ex-Vivo Ciliogenesis and Dose-Dependent Effect of Notch Inhibition on Ciliogenesis of Respiratory Epithelia. Biomolecules, 2020, 10, 1182.	1.8	5
23	Mutation of LRP1 in cardiac neural crest cells causes congenital heart defects by perturbing outflow lengthening. Communications Biology, 2020, 3, 312.	2.0	14
24	Left–right patterning in congenital heart disease beyond heterotaxy. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2020, 184, 90-96.	0.7	16
25	Novel insights into the genetic landscape of congenital heart disease with systems genetics. Progress in Pediatric Cardiology, 2019, 54, 101128.	0.2	0
26	Deposition studies of aerosol delivery by nasal cannula to infants. Pediatric Pulmonology, 2019, 54, 1319-1325.	1.0	21
27	Genetics of Congenital Heart Disease. Biomolecules, 2019, 9, 879.	1.8	101
28	Reply to †Double-outlet right ventricle is not hypoplastic left heart syndrome†M. Nature Genetics, 2019, 51, 198-199.	9.4	4
29	Mouse models of hypoplastic left heart syndrome (HLHS) reveal new targets for potential intervention. FASEB Journal, 2019, 33, 18.2.	0.2	0
30	Wdpcp promotes epicardial EMT and epicardium-derived cell migration to facilitate coronary artery remodeling. Science Signaling, 2018, 11, .	1.6	10
31	Coincident myelomeningocele and gastroschisis: report of 2 cases. Journal of Neurosurgery: Pediatrics, 2018, 21, 574-577.	0.8	4
32	The Genetic Landscape of Hypoplastic Left Heart Syndrome. Pediatric Cardiology, 2018, 39, 1069-1081.	0.6	44
33	Perinatal SSRI exposure permanently alters cerebral serotonin receptor mRNA in mice but does not impact adult behaviors. Journal of Maternal-Fetal and Neonatal Medicine, 2018, 31, 1393-1401.	0.7	19
34	Airway ciliary dysfunction: Association with adverse postoperative outcomes in nonheterotaxy congenital heart disease patients. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 755-763.e7.	0.4	17
35	Cardiac Targeting Peptide, a Novel Cardiac Vector: Studies in Bio-Distribution, Imaging Application, and Mechanism of Transduction. Biomolecules, 2018, 8, 147.	1.8	35
36	A computational framework for the detection of subcortical brain dysmaturation in neonatal MRI using 3D Convolutional Neural Networks. NeuroImage, 2018, 178, 183-197.	2.1	33

#	Article	IF	CITATIONS
37	Congenital Heart Defects and Ciliopathies Associated With Renal Phenotypes. Frontiers in Pediatrics, 2018, 6, 175.	0.9	18
38	Exome-chip meta-analysis identifies novel loci associated with cardiac conduction, including ADAMTS6. Genome Biology, 2018, 19, 87.	3.8	47
39	Vertebrate myosinÂ1d regulates left–right organizer morphogenesis and laterality. Nature Communications, 2018, 9, 3381.	5.8	21
40	Airway ciliary dysfunction and respiratory symptoms in patients with transposition of the great arteries. PLoS ONE, 2018, 13, e0191605.	1.1	17
41	Cilia and Ciliopathies in Congenital Heart Disease. Cold Spring Harbor Perspectives in Biology, 2017, 9, a028266.	2.3	44
42	Cardiac Outcomes After Perinatal Sertraline Exposure in Mice. Journal of Cardiovascular Pharmacology, 2017, 70, 119-127.	0.8	12
43	Loss of function in <i>ROBO1</i> is associated with tetralogy of Fallot and septal defects. Journal of Medical Genetics, 2017, 54, 825-829.	1.5	27
44	The complex genetics of hypoplastic left heart syndrome. Nature Genetics, 2017, 49, 1152-1159.	9.4	177
45	Phenotyping cardiac and structural birth defects in fetal and newborn mice. Birth Defects Research, 2017, 109, 778-790.	0.8	10
46	Reply. Journal of Pediatrics, 2017, 185, 253-254.	0.9	0
46	Reply. Journal of Pediatrics, 2017, 185, 253-254. Bedside Back to Bench: Building Bridges between Basic and Clinical Genomic Research. Cell, 2017, 169, 6-12.	0.9	0
	Bedside Back to Bench: Building Bridges between Basic and Clinical Genomic Research. Cell, 2017, 169,		
47	Bedside Back to Bench: Building Bridges between Basic and Clinical Genomic Research. Cell, 2017, 169, 6-12. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands.	13.5	103
47	Bedside Back to Bench: Building Bridges between Basic and Clinical Genomic Research. Cell, 2017, 169, 6-12. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nature Genetics, 2017, 49, 1593-1601.	13.5 9.4	103 624
48	Bedside Back to Bench: Building Bridges between Basic and Clinical Genomic Research. Cell, 2017, 169, 6-12. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nature Genetics, 2017, 49, 1593-1601. Diverse application of MRI for mouse phenotyping. Birth Defects Research, 2017, 109, 758-770. Low Nasal NO in Congenital Heart Disease With Systemic Right Ventricle and Postcardiac	9.4 0.8	103 624 9
47 48 49 50	Bedside Back to Bench: Building Bridges between Basic and Clinical Genomic Research. Cell, 2017, 169, 6-12. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nature Genetics, 2017, 49, 1593-1601. Diverse application of MRI for mouse phenotyping. Birth Defects Research, 2017, 109, 758-770. Low Nasal NO in Congenital Heart Disease With Systemic Right Ventricle and Postcardiac Transplantation. Journal of the American Heart Association, 2017, 6, . Assessment of ciliary phenotype in primary ciliary dyskinesia by micro-optical coherence tomography.	13.5 9.4 0.8	103 624 9 7
47 48 49 50	Bedside Back to Bench: Building Bridges between Basic and Clinical Genomic Research. Cell, 2017, 169, 6-12. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nature Genetics, 2017, 49, 1593-1601. Diverse application of MRI for mouse phenotyping. Birth Defects Research, 2017, 109, 758-770. Low Nasal NO in Congenital Heart Disease With Systemic Right Ventricle and Postcardiac Transplantation. Journal of the American Heart Association, 2017, 6, . Assessment of ciliary phenotype in primary ciliary dyskinesia by micro-optical coherence tomography. JCI Insight, 2017, 2, e91702. DNAH6 and Its Interactions with PCD Genes in Heterotaxy and Primary Ciliary Dyskinesia. PLoS Genetics,	13.5 9.4 0.8 1.6	103 624 9 7

#	Article	IF	CITATIONS
55	<i>Prickle1</i> mutation causes planar cell polarity and directional cell migration defects associated with cardiac outflow tract anomalies and other structural birth defects. Biology Open, 2016, 5, 323-335.	0.6	43
56	Genetics of Hypoplastic Left Heart Syndrome. Journal of Pediatrics, 2016, 173, 25-31.	0.9	31
57	Establishment of Cardiac Laterality. , 2016, , 71-81.		0
58	Role of Cilia and Left-Right Patterning in Congenital Heart Disease. , 2016, , 67-79.		3
59	Dexmedetomidine and Fentanyl Exhibit Temperature Dependent Effects on Human Respiratory Cilia. Frontiers in Pediatrics, 2015, 3, 7.	0.9	5
60	ANKS6 is the critical activator of NEK8 kinase in embryonic situs determination and organ patterning. Nature Communications, 2015, 6, 6023.	5.8	43
61	Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature, 2015, 521, 520-524.	13.7	357
62	Respiratory motile cilia dysfunction in a patient with cranioectodermal dysplasia. American Journal of Medical Genetics, Part A, 2015, 167, 2188-2196.	0.7	33
63	Establishing normative nasal nitric oxide values in infants. Respiratory Medicine, 2015, 109, 1126-1130.	1.3	22
64	MMP21 is mutated in human heterotaxy and is required for normal left-right asymmetry in vertebrates. Nature Genetics, 2015, 47, 1260-1263.	9.4	65
65	Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families. Nature Genetics, 2015, 47, 1363-1369.	9.4	133
66	Automated identification of abnormal respiratory ciliary motion in nasal biopsies. Science Translational Medicine, 2015, 7, 299ra124.	5.8	35
67	Novel Jbts17 mutant mouse model of Joubert syndrome with cilia transition zone defects and cerebellar and other ciliopathy related anomalies. Human Molecular Genetics, 2015, 24, 3994-4005.	1.4	34
68	The Effects of Temperature and Anesthetic Agents on Ciliary Function in Murine Respiratory Epithelia. Frontiers in Pediatrics, 2014, 2, 111.	0.9	27
69	Airway Ciliary Dysfunction and Sinopulmonary Symptoms in Patients with Congenital Heart Disease. Annals of the American Thoracic Society, 2014, 11, 1426-1432.	1.5	38
70	CCDC151 Mutations Cause Primary Ciliary Dyskinesia by Disruption of the Outer Dynein Arm Docking Complex Formation. American Journal of Human Genetics, 2014, 95, 257-274.	2.6	149
71	Role of cilia in structural birth defects: Insights from ciliopathy mutant mouse models. Birth Defects Research Part C: Embryo Today Reviews, 2014, 102, 115-125.	3.6	24
72	Interrogating Congenital Heart Defects With Noninvasive Fetal Echocardiography in a Mouse Forward Genetic Screen. Circulation: Cardiovascular Imaging, 2014, 7, 31-42.	1.3	38

#	Article	IF	Citations
73	lon Torrent sequencing for conducting genome-wide scans for mutation mapping analysis. Mammalian Genome, 2014, 25, 120-128.	1.0	15
74	IFT27 Links the BBSome to IFT for Maintenance of the Ciliary Signaling Compartment. Developmental Cell, 2014, 31, 279-290.	3.1	225
75	A detailed comparison of mouse and human cardiac development. Pediatric Research, 2014, 76, 500-507.	1.1	110
76	A Unique Set of Centrosome Proteins Requires Pericentrin for Spindle-Pole Localization and Spindle Orientation. Current Biology, 2014, 24, 2327-2334.	1.8	77
77	Increased postoperative respiratory complications in heterotaxy congenital heart disease patients with respiratory ciliary dysfunction. Journal of Thoracic and Cardiovascular Surgery, 2014, 147, 1291-1298.e2.	0.4	50
78	DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nature Genetics, 2013, 45, 995-1003.	9.4	256
79	ARMC4 Mutations Cause Primary Ciliary Dyskinesia with Randomization of Left/Right Body Asymmetry. American Journal of Human Genetics, 2013, 93, 357-367.	2.6	150
80	Wdpcp, a PCP Protein Required for Ciliogenesis, Regulates Directional Cell Migration and Cell Polarity by Direct Modulation of the Actin Cytoskeleton. PLoS Biology, 2013, 11, e1001720.	2.6	87
81	Microcomputed Tomography Provides High Accuracy Congenital Heart Disease Diagnosis in Neonatal and Fetal Mice. Circulation: Cardiovascular Imaging, 2013, 6, 551-559.	1.3	35
82	Imaging techniques for visualizing and phenotyping congenital heart defects in murine models. Birth Defects Research Part C: Embryo Today Reviews, 2013, 99, 93-105.	3.6	31
83	Ex vivo Method for High Resolution Imaging of Cilia Motility in Rodent Airway Epithelia. Journal of Visualized Experiments, 2013, , .	0.2	35
84	Engineered Human Muscle Tissue from Skeletal Muscle Derived Stem Cells and Induced Pluripotent Stem Cell Derived Cardiac Cells. International Journal of Tissue Engineering, 2013, 2013, 1-15.	0.6	10
85	Congenital heart disease and the specification of left-right asymmetry. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H2102-H2111.	1.5	48
86	MAPK Phosphorylation of Connexin 43 Promotes Binding of Cyclin E and Smooth Muscle Cell Proliferation. Circulation Research, 2012, 111, 201-211.	2.0	89
87	High-purity enrichment of functional cardiovascular cells from human iPS cells. Cardiovascular Research, 2012, 95, 327-335.	1.8	82
88	High Prevalence of Respiratory Ciliary Dysfunction in Congenital Heart Disease Patients With Heterotaxy. Circulation, 2012, 125, 2232-2242.	1.6	158
89	How insights from cardiovascular developmental biology have impacted the care of infants and children with congenital heart disease. Mechanisms of Development, 2012, 129, 75-97.	1.7	26
90	IFT25 Links the Signal-Dependent Movement of Hedgehog Components to Intraflagellar Transport. Developmental Cell, 2012, 22, 940-951.	3.1	196

#	Article	IF	Citations
91	Evaluating the role of connexin43 in congenital heart disease: Screening for mutations in patients with outflow tract anomalies and the analysis of knock-in mouse models. Journal of Cardiovascular Disease Research (discontinued), 2011, 2, 206-212.	0.1	41
92	Increased postoperative and respiratory complications in patients with congenital heart disease associated with heterotaxy. Journal of Thoracic and Cardiovascular Surgery, 2011, 141, 637-644.e3.	0.4	76
93	Disruption of Mks1 localization to the mother centriole causes cilia defects and developmental malformations in Meckel-Gruber syndrome. DMM Disease Models and Mechanisms, 2011, 4, 43-56.	1.2	78
94	Connexin43 Modulates Cell Polarity and Directional Cell Migration by Regulating Microtubule Dynamics. PLoS ONE, 2011, 6, e26379.	1.1	99
95	Developmental atlas of the early first trimester human embryo. Developmental Dynamics, 2010, 239, 1585-1595.	0.8	66
96	Imaging modalities to assess structural birth defects in mutant mouse models. Birth Defects Research Part C: Embryo Today Reviews, 2010, 90, 176-184.	3.6	26
97	Ventricular Rotation Is Independent of Cardiac Looping: A Study in Mice With Situs Inversus Totalis Using Speckle-Tracking Echocardiography. Journal of the American Society of Echocardiography, 2010, 23, 315-323.	1.2	9
98	Massively parallel sequencing identifies the gene <i>Megf8</i> with ENU-induced mutation causing heterotaxy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3219-3224.	3.3	57
99	Human Cardiac Development in the First Trimester. Circulation, 2009, 120, 343-351.	1.6	87
100	Initiation and maturation of cilia-generated flow in newborn and postnatal mouse airway. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L1067-L1075.	1.3	42
101	Connexin 43 regulates epicardial cell polarity and migration in coronary vascular development. Development (Cambridge), 2009, 136, 3185-3193.	1.2	80
102	Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development. Developmental Biology, 2009, 326, 368-377.	0.9	168
103	Loss of Nephrocystin-3 Function Can Cause Embryonic Lethality,ÂMeckel-Gruber-like Syndrome, Situs Inversus, and Renal-Hepatic-Pancreatic Dysplasia. American Journal of Human Genetics, 2008, 82, 959-970.	2.6	294
104	The Golgin GMAP210/TRIP11 Anchors IFT20 to the Golgi Complex. PLoS Genetics, 2008, 4, e1000315.	1.5	161
105	Murine CENPF interacts with syntaxin 4 in the regulation of vesicular transport. Journal of Cell Science, 2008, 121, 3413-3421.	1.2	21
106	Mouse Model of Heterotaxy with Single Ventricle Spectrum of Cardiac Anomalies. Pediatric Research, 2008, 63, 9-14.	1.1	28
107	Skeletal malformations associated with mutations causing leftâ€right patterning defects. FASEB Journal, 2008, 22, 773.4.	0.2	0
108	Nt mutation causing laterality defects associated with deletion of rotatin. Mammalian Genome, 2007, 18, 310-315.	1.0	12

#	Article	IF	CITATIONS
109	Heterotaxy and complex structural heart defects in a mutant mouse model of primary ciliary dyskinesia. Journal of Clinical Investigation, 2007, 117, 3742-52.	3.9	94
110	Klf2 Is an Essential Regulator of Vascular Hemodynamic Forces In Vivo. Developmental Cell, 2006, 11, 845-857.	3.1	241
111	Fetal Mouse Imaging Using Echocardiography: A Review of Current Technology. Echocardiography, 2006, 23, 891-899.	0.3	30
112	Patterning of coronary arteries in wildtype and connexin43 knockout mice. Developmental Dynamics, 2006, 235, 2786-2794.	0.8	37
113	Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells. Development (Cambridge), 2006, 133, 3629-3639.	1.2	146
114	High-throughput mouse genotyping using robotics automation. BioTechniques, 2005, 38, 219-223.	0.8	6
115	Special Conference Issue Introduction. Cell Communication and Adhesion, 2005, 12, 71-71.	1.0	0
116	Connexin43 Associated with an N-cadherin-containing Multiprotein Complex Is Required for Gap Junction Formation in NIH3T3 Cells. Journal of Biological Chemistry, 2005, 280, 19925-19936.	1.6	181
117	Connexin43 deficiency causes dysregulation of coronary vasculogenesis. Developmental Biology, 2005, 284, 479-498.	0.9	67
118	ENU induced mutations causing congenital cardiovascular anomalies. Development (Cambridge), 2004, 131, 6211-6223.	1.2	89
119	Rapid high resolution three dimensional reconstruction of embryos with episcopic fluorescence image capture. Birth Defects Research Part C: Embryo Today Reviews, 2004, 72, 213-223.	3.6	85
120	High-frequency ultrasound database profiling growth, development, and cardiovascular function in C57BL/6J mouse fetuses. Journal of the American Society of Echocardiography, 2004, 17, 893-900.	1.2	32
121	CONNEXINS AND CELL SIGNALING IN DEVELOPMENT AND DISEASE. Annual Review of Cell and Developmental Biology, 2004, 20, 811-838.	4.0	352
122	Noninvasive phenotypic analysis of cardiovascular structure and function in fetal mice using ultrasound. Birth Defects Research Part C: Embryo Today Reviews, 2003, 69, 83-91.	3.6	17
123	Of Mice and Men (and More): 2003 International Gap Junction Meeting. Cell Communication and Adhesion, 2003, 10, 169-172.	1.0	0
124	Meeting report: NHLBI Symposium on Phenotyping: Mouse Cardiovascular Function and Development. Physiological Genomics, 2003, 13, 185-186.	1.0	4
125	The Wheels Mutation in the Mouse Causes Vascular, Hindbrain, and Inner Ear Defects. Developmental Biology, 2001, 234, 244-260.	0.9	33
126	$Cx43/\hat{l}^2$ -Gal Inhibits Cx43 Transport in the Golgi Apparatus. Cell Communication and Adhesion, 2001, 8, 249-252.	1.0	3

#	Article	IF	Citations
127	Null Mutation of Connexin43 Causes Slow Propagation of Ventricular Activation in the Late Stages of Mouse Embryonic Development. Circulation Research, 2001, 88, 1196-1202.	2.0	129
128	Multimeric connexin interactions prior to the trans-Golgi network. Journal of Cell Science, 2001, 114, 4013-4024.	1.2	52
129	Gap junctions in development. Advances in Molecular and Cell Biology, 2000, 30, 193-219.	0.1	3
130	Role of Gap Junctions in Cardiac Conduction and Development. Circulation Research, 2000, 87, 346-348.	2.0	121
131	Characterization of Conduction in the Ventricles of Normal and Heterozygous Cx43 Knockout Mice Using Optical Mapping. Journal of Cardiovascular Electrophysiology, 1999, 10, 1361-1375.	0.8	239
132	Gap Junction Communication and the Modulation of Cardiac Neural Crest Cells. Trends in Cardiovascular Medicine, 1999, 9, 63-69.	2.3	72
133	Genes, gene knockouts, and mutations in the analysis of gap junctions. , 1999, 24, 1-4.		64
134	Connexin 43 Expression Reflects Neural Crest Patterns during Cardiovascular Development. Developmental Biology, 1999, 208, 307-323.	0.9	169
135	Chapter 26: Cx43 ($\hat{l}\pm 1$) Gap Junctions in Cardiac Development and Disease. Current Topics in Membranes, 1999, 49, 581-602.	0.5	7
136	Cx43 Gap Junctions in Cardiac Development. Trends in Cardiovascular Medicine, 1998, 8, 264-269.	2.3	29
137	Cx43 gap junction gene expression and gap junctional communication in mouse neural crest cells. , 1997, 20, 119-132.		134
138	Developmental regulation and asymmetric expression of the gene encoding Cx43 gap junctions in the mouse limb bud. Genesis, 1997, 21, 290-300.	3.3	57
139	Developmental regulation and asymmetric expression of the gene encoding Cx43 gap junctions in the mouse limb bud. Genesis, 1997, 21, 290-300.	3.3	4
140	The role of gap junction membrane channels in development. Journal of Bioenergetics and Biomembranes, 1996, 28, 379-385.	1.0	151
141	Perturbation in connexin 43 and connexin 26 gap-junction expression in mouse skin hyperplasia and neoplasia., 1996, 17, 49-61.		59
142	Perturbation in connexin 43 and connexin 26 gap-junction expression in mouse skin hyperplasia and neoplasia., 1996, 17, 49.		2
143	Nonoverlapping expression of Cx43 and Cx26 in the mouse placenta and decidua: A pattern of gap junction gene expression differing from that in the rat. Molecular Reproduction and Development, 1995, 41, 195-203.	1.0	24
144	Lethality of Rw/Rw Mouse Embryos during Early Postimplantation Development. Developmental Biology, 1995, 168, 307-318.	0.9	4

#	Article	IF	Citations
145	Structure, sequence and expression of the mouse Cx43 gene encoding connexin 43. Gene, 1993, 130, 191-199.	1.0	76
146	Widespread Distribution of Cells Containing Human DNA in Embryos Derived from Mouse Eggs Injected with Human Chromosome Fragments. Human Gene Therapy, 1993, 4, 597-607.	1.4	0
147	Restrictions in gap junctional communication in the Drosophila larval epidermis. Developmental Dynamics, 1992, 193, 70-82.	0.8	21
148	Connexin 43 expression in the mouse embryo: Localization of transcripts within developmentally significant domains. Developmental Dynamics, 1992, 194, 261-281.	0.8	132
149	The course of giardiavirus infection in the Giardia lamblia trophozoites. Experimental Parasitology, 1991, 73, 413-423.	0.5	17
150	Tracking of mouse cell lineage using microinjected DNA sequences: Analyses using genomic Southern blotting and tissue-section in situ hybridizations. Differentiation, 1987, 35, 37-44.	1.0	54
151	High frequency DNA rearrangements associated with mouse centromeric satellite DNA. Journal of Molecular Biology, 1986, 187, 547-556.	2.0	48
152	Novel approach for restriction mapping repetitive DNA elements using DNA transformation. Somatic Cell and Molecular Genetics, 1985, 11, 455-465.	0.7	4
153	An anterior/posterior communication compartment border in engrailed wing discs: Possible implications for Drosophila pattern formation. Developmental Biology, 1985, 110, 84-90.	0.9	19
154	Gap-junctional communication compartments in the Drosophila wing imaginal disk. Developmental Biology, 1984, 102, 130-146.	0.9	66
155	PCC4azal teratocarcinoma stem cell differentiation in culture. Developmental Biology, 1980, 75, 78-92.	0.9	21
156	PCC4azal teratocarcinoma stem cell differentiation in culture. Developmental Biology, 1980, 75, 93-111.	0.9	14
157	PCC4azal teratocarcinoma stem cell differentiation in culture. Developmental Biology, 1980, 75, 112-120.	0.9	14
158	Gap junctional communication in the preimplantation mouse embryo. Cell, 1979, 18, 399-409.	13.5	271
159	Gap junctional communication in the post-implantation mouse embryo. Cell, 1979, 18, 411-422.	13.5	218
160	Heterotaxy. , 0, , 166-177.		0