## Doris Rentsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9246873/publications.pdf

Version: 2024-02-01

70 papers 7,146 citations

<sup>76196</sup>
40
h-index

70 g-index

70 all docs

70 docs citations

times ranked

70

6983 citing authors

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends in Plant Science, 2014, 19, 5-9.                                                                     | 4.3 | 581       |
| 2  | Arsenic tolerance in <i>Arabidopsis</i> is mediated by two ABCC-type phytochelatin transporters. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21187-21192. | 3.3 | 555       |
| 3  | Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Letters, 2007, 581, 2281-2289.                                                                                       | 1.3 | 323       |
| 4  | NTR1encodes a high affinity oligopeptide transporter inArabidopsis. FEBS Letters, 1995, 370, 264-268.                                                                                                     | 1.3 | 308       |
| 5  | Nonredundant Regulation of Rice Arbuscular Mycorrhizal Symbiosis by Two Members of the <i>PHOSPHATE TRANSPORTER1 </i> Gene Family. Plant Cell, 2012, 24, 4236-4251.                                       | 3.1 | 306       |
| 6  | Plants can use protein as a nitrogen source without assistance from other organisms. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4524-4529.               | 3.3 | 296       |
| 7  | Proline metabolism and transport in plant development. Amino Acids, 2010, 39, 949-962.                                                                                                                    | 1.2 | 290       |
| 8  | Uptake and Partitioning of Amino Acids and Peptides. Molecular Plant, 2010, 3, 997-1011.                                                                                                                  | 3.9 | 246       |
| 9  | LeProT1, a Transporter for Proline, Glycine Betaine, and γ-Amino Butyric Acid in Tomato Pollen. Plant<br>Cell, 1999, 11, 377-391.                                                                         | 3.1 | 245       |
| 10 | Conservation of amino acid transporters in fungi, plants and animals. Trends in Biochemical Sciences, 2002, 27, 139-147.                                                                                  | 3.7 | 210       |
| 11 | Low and high affinity amino acid H+â€cotransporters for cellular import of neutral and charged amino acids. Plant Journal, 2002, 29, 717-731.                                                             | 2.8 | 192       |
| 12 | A New Family of High-Affinity Transporters for Adenine, Cytosine, and Purine Derivatives in Arabidopsis. Plant Cell, 2000, 12, 291-300.                                                                   | 3.1 | 190       |
| 13 | AtPTR1 and AtPTR5 Transport Dipeptides in Planta. Plant Physiology, 2008, 148, 856-869.                                                                                                                   | 2.3 | 175       |
| 14 | Developmental control of H+/amino acid permease gene expression during seed development of Arabidopsis. Plant Journal, 1998, 14, 535-544.                                                                 | 2.8 | 163       |
| 15 | Hypersensitivity of an Arabidopsis Sugar Signaling Mutant toward Exogenous Proline Application.<br>Plant Physiology, 2000, 123, 779-789.                                                                  | 2.3 | 162       |
| 16 | High Affinity Amino Acid Transporters Specifically Expressed in Xylem Parenchyma and Developing Seeds of Arabidopsis. Journal of Biological Chemistry, 2002, 277, 45338-45346.                            | 1.6 | 162       |
| 17 | The AtProT Family. Compatible Solute Transporters with Similar Substrate Specificity But Differential Expression Patterns. Plant Physiology, 2005, 137, 117-126.                                          | 2.3 | 161       |
| 18 | Turning the Table: Plants Consume Microbes as a Source of Nutrients. PLoS ONE, 2010, 5, e11915.                                                                                                           | 1.1 | 136       |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Altered expression of the <i><scp>PTR</scp>/<scp>NRT</scp>1</i> homologue <i>Os<scp>PTR</scp>9</i> affects nitrogen utilization efficiency, growth and grain yield in rice. Plant Biotechnology Journal, 2013, 11, 446-458. | 4.1 | 131       |
| 20 | AtGAT1, a High Affinity Transporter for $\hat{l}^3$ -Aminobutyric Acid in Arabidopsis thaliana. Journal of Biological Chemistry, 2006, 281, 7197-7204.                                                                      | 1.6 | 115       |
| 21 | Cloning of anArabidopsishistidine transporting protein related to nitrate and peptide transporters. FEBS Letters, 1994, 347, 185-189.                                                                                       | 1.3 | 111       |
| 22 | Identification and characterization of GABA, proline and quaternary ammonium compound transporters from Arabidopsis thaliana. FEBS Letters, 1999, 450, 280-284.                                                             | 1.3 | 104       |
| 23 | In planta function of compatible solute transporters of the AtProT family. Journal of Experimental Botany, 2011, 62, 787-796.                                                                                               | 2.4 | 100       |
| 24 | AtPTR1, a plasma membrane peptide transporter expressed during seed germination and in vascular tissue of Arabidopsis. Plant Journal, 2004, 40, 488-499.                                                                    | 2.8 | 96        |
| 25 | A Novel Family of Transporters Mediating the Transport of Glutathione Derivatives in Plants. Plant Physiology, 2004, 134, 482-491.                                                                                          | 2.3 | 96        |
| 26 | Amino Acid Export in Developing Arabidopsis Seeds Depends on UmamiT Facilitators. Current Biology, 2015, 25, 3126-3131.                                                                                                     | 1.8 | 90        |
| 27 | An Arginine Deprivation Response Pathway Is Induced in Leishmania during Macrophage Invasion. PLoS Pathogens, 2016, 12, e1005494.                                                                                           | 2.1 | 86        |
| 28 | A novel highâ€affinity arginine transporter from the human parasitic protozoan Leishmania donovani.<br>Molecular Microbiology, 2006, 60, 30-38.                                                                             | 1.2 | 79        |
| 29 | Citrate transport into barley mesophyll vacuoles ? comparison with malate-uptake activity. Planta, 1991, 184, 532-7.                                                                                                        | 1.6 | 75        |
| 30 | PLANT BIOLOGY:Enhanced: Taking Transgenic Plants with a Pinch of Salt. Science, 1999, 285, 1222-1223.                                                                                                                       | 6.0 | 74        |
| 31 | Catabolism of chlorophyll in vivo: significance of polar chlorophyll catabolites in a non-yellowing senescence mutant of Festuca pratensis Huds New Phytologist, 1989, 111, 3-8.                                            | 3.5 | 72        |
| 32 | A Critical Role of AMT2;1 in Root-To-Shoot Translocation of Ammonium in Arabidopsis. Molecular Plant, 2017, 10, 1449-1460.                                                                                                  | 3.9 | 66        |
| 33 | Hypersensitivity of an Arabidopsis Sugar Signaling Mutant toward Exogenous Proline Application.<br>Plant Physiology, 2000, 122, 357-368.                                                                                    | 2.3 | 65        |
| 34 | Salt Stress-Induced Proline Transporters and Salt Stress-Repressed Broad Specificity Amino Acid Permeases Identified by Suppression of a Yeast Amino Acid Permease-Targeting Mutant. Plant Cell, 1996, 8, 1437.             | 3.1 | 64        |
| 35 | Arginine Homeostasis and Transport in the Human Pathogen Leishmania donovani. Journal of Biological Chemistry, 2009, 284, 19800-19807.                                                                                      | 1.6 | 61        |
| 36 | Traffic Routes and Signals for the Tonoplast. Traffic, 2013, 14, 622-628.                                                                                                                                                   | 1.3 | 58        |

| #  | Article                                                                                                                                                                                                 | IF   | Citations |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Peptide and Amino Acid Transporters Are Differentially Regulated during Seed Development and Germination in Faba Bean. Plant Physiology, 2003, 132, 1950-1960.                                          | 2.3  | 57        |
| 38 | Phytol and the Breakdown of Chlorophyll in Senescent Leaves. Journal of Plant Physiology, 1989, 135, 428-432.                                                                                           | 1.6  | 55        |
| 39 | Nitrogen affects cluster root formation and expression of putative peptide transporters. Journal of Experimental Botany, 2009, 60, 2665-2676.                                                           | 2.4  | 55        |
| 40 | Determinants for <i>Arabidopsis</i> Peptide Transporter Targeting to the Tonoplast or Plasma Membrane. Traffic, 2012, 13, 1090-1105.                                                                    | 1.3  | 48        |
| 41 | AtPTR4 and AtPTR6 are differentially expressed, tonoplast-localized members of the peptide transporter/nitrate transporter 1 (PTR/NRT1) family. Planta, 2012, 235, 311-323.                             | 1.6  | 44        |
| 42 | A versatile proline/alanine transporter in the unicellular pathogen <i>Leishmania donovani</i> regulates amino acid homoeostasis and osmotic stress responses. Biochemical Journal, 2013, 449, 555-566. | 1.7  | 42        |
| 43 | Rhesus factors and ammonium: a function in efflux?. Genome Biology, 2001, 2, reviews1010.1.                                                                                                             | 13.9 | 40        |
| 44 | Characterization and expression of French bean amino acid transporter PvAAP1. Plant Science, 2008, 174, 348-356.                                                                                        | 1.7  | 39        |
| 45 | Arabidopsis and Lobelia anceps access small peptides as a nitrogen source for growth. Functional Plant Biology, 2011, 38, 788.                                                                          | 1.1  | 39        |
| 46 | Isolation and functional characterization of a high affinity urea transporter from roots of Zea mays. BMC Plant Biology, 2014, 14, 222.                                                                 | 1.6  | 39        |
| 47 | Functional Properties of the Arabidopsis Peptide Transporters AtPTR1 and AtPTR5*. Journal of Biological Chemistry, 2010, 285, 39710-39717.                                                              | 1.6  | 37        |
| 48 | Functional reconstitution of the malate carrier of barley mesophyll vacuoles in liposomes. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1062, 271-278.                                           | 1.4  | 36        |
| 49 | Lysine transporters in human trypanosomatid pathogens. Amino Acids, 2012, 42, 347-360.                                                                                                                  | 1.2  | 34        |
| 50 | The transporter GAT1 plays an important role in GABA-mediated carbon-nitrogen interactions in Arabidopsis. Frontiers in Plant Science, 2015, 6, 785.                                                    | 1.7  | 30        |
| 51 | Effects of externally supplied protein on root morphology and biomass allocation in Arabidopsis.<br>Scientific Reports, 2014, 4, 5055.                                                                  | 1.6  | 29        |
| 52 | Transport of Arginine and Aspartic Acid into Isolated Barley Mesophyll Vacuoles. Plant Physiology, 1991, 97, 644-650.                                                                                   | 2.3  | 26        |
| 53 | Comparative genomics and functional analysis of the NiaP family uncover nicotinate transporters from bacteria, plants, and mammals. Functional and Integrative Genomics, 2012, 12, 25-34.               | 1.4  | 25        |
| 54 | Arginine and Lysine Transporters Are Essential for Trypanosoma brucei. PLoS ONE, 2017, 12, e0168775.                                                                                                    | 1.1  | 24        |

| #  | Article                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Detoxification of succinate semialdehyde in <i>Arabidopsis</i> glyoxylate reductase and NAD kinase mutants subjected to submergence stress. Botany, 2012, 90, 51-61.   | 0.5 | 23        |
| 56 | Characterization of a transport activity for long-chain peptides in barley mesophyll vacuoles. Journal of Experimental Botany, 2011, 62, 2403-2410.                    | 2.4 | 16        |
| 57 | <i>Trypanosoma brucei</i> eflornithine transporter AAT6 is a low-affinity low-selective transporter for neutral amino acids. Biochemical Journal, 2014, 463, 9-18.     | 1.7 | 16        |
| 58 | Transporters of <i>Trypanosoma brucei</i> â€"phylogeny, physiology, pharmacology. FEBS Journal, 2018, 285, 1012-1023.                                                  | 2.2 | 16        |
| 59 | Organic nitrogen. New Phytologist, 2014, 203, 29-31.                                                                                                                   | 3.5 | 15        |
| 60 | Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23%. Scientific Reports, 2020, 10, 17219.                                     | 1.6 | 15        |
| 61 | LeProT1, a Transporter for Proline, Glycine Betaine, and g-Amino Butyric Acid in Tomato Pollen. Plant Cell, 1999, 11, 377.                                             | 3.1 | 14        |
| 62 | Soybean Yellow Stripe-like 7 is a symbiosome membrane peptide transporter important for nitrogen fixation. Plant Physiology, 2021, 186, 581-598.                       | 2.3 | 14        |
| 63 | Characterization of choline uptake in Trypanosoma brucei procyclic and bloodstream forms.<br>Molecular and Biochemical Parasitology, 2013, 190, 16-22.                 | 0.5 | 13        |
| 64 | The Tonoplast-associated Citrate Binding Protein (CBP) of Hevea brasiliensis. Journal of Biological Chemistry, 1995, 270, 30525-30531.                                 | 1.6 | 12        |
| 65 | Ornithine uptake and the modulation of drug sensitivity in <i>Trypanosoma brucei</i> . FASEB Journal, 2017, 31, 4649-4660.                                             | 0.2 | 12        |
| 66 | Wheat amino acid transporters highly expressed in grain cells regulate amino acid accumulation in grain. PLoS ONE, 2021, 16, e0246763.                                 | 1.1 | 11        |
| 67 | Size does matter: 18 amino acids at the N-terminal tip of an amino acid transporter in Leishmania determine substrate specificity. Scientific Reports, 2015, 5, 16289. | 1.6 | 8         |
| 68 | Organic Carbon and Nitrogen Transporters. Plant Cell Monographs, 2011, , 331-352.                                                                                      | 0.4 | 8         |
| 69 | Nutrient availability regulates proline/alanine transporters in Trypanosoma brucei. Journal of Biological Chemistry, 2021, 296, 100566.                                | 1.6 | 7         |
| 70 | Identification and characterization of the three members of the CLC family of anion transport proteins in Trypanosoma brucei. PLoS ONE, 2017, 12, e0188219.            | 1.1 | 3         |